Page images
PDF
EPUB

VII.

ON THE PHYSICAL BASIS OF LIFE.1

In order to make the title of this discourse generally intelligible, I have translated the term "Protoplasm," which is the scientific name of the substance of which I am about to speak, by the words "the physical basis of life." I suppose that, to many, the idea that there is such a thing as a physical basis, or matter, of life may be novel-so widely spread is the conception of life as a something which works through matter, but is independent of it; and even those who are aware that matter and life are inseparably connected, may not be prepared for the conclusion plainly suggested by the phrase, “the physical basis or matter of life," that there is some one

1 The substance of this paper was contained in a discourse which was delivered in Edinburgh on the evening of Sunday, the 8th of November, 1868-being the first of a series of Sunday evening addresses upon nontheological topics, instituted by the Rev. J. Cranbrook. Some phrases, which could possess only a transitory and local interest, have been omitted; instead of the newspaper report of the Archbishop of York's address, his Grace's subsequently-published pamphlet "On the Limits of Philosophical Inquiry" is quoted; and I have, here and there, endeavoured to express my meaning more fully and clearly than I seem to have done in speaking—if I may judge by sundry criticisms upon what I am supposed to have said, which have appeared. But in substance, and, so far as my recollection serves, in form, what is here written corresponds with what was there said.

kind of matter which is common to all living beings, and that their endless diversities are bound together by a physical, as well as an ideal, unity. In fact, when first apprehended, such a doctrine as this appears almost shocking to common sense.

What, truly, can seem to be more obviously different from one another in faculty, in form, and in substance, than the various kinds of living beings? What community of faculty can there be between the brightly-coloured lichen, which so nearly resembles a mere mineral incrustation of the bare rock on which it grows, and the painter, to whom it is instinct with beauty, or the botanist, whom it feeds with knowledge?

Again, think of the microscopic fungus-a mere infinitesimal ovoid particle, which finds space and duration enough to multiply into countless millions in the body of a living fly; and then of the wealth of foliage, the luxuriance of flower and fruit, which lies between this bald sketch of a plant and the giant pine of California, towering to the dimensions of a cathedral spire, or the Indian fig, which covers acres with its profound shadow, and endures while nations and empires come and go around its vast circumference? Or, turning to the other half of the world of life, picture to yourselves the great Finner whale, hugest of beasts that live, or have lived, disporting his eighty or ninety feet of bone, muscle, and blubber, with easy roll, among waves in which the stoutest ship that ever left dockyard would founder hopelessly; and contrast him with the invisible animalcules-mere gelatinous specks, multitudes of which could, in fact, dance upon the point of a needle with the same ease as the angels of the Schoolmen could, in imagination.

With these images before your minds, you may well ask, what community of form, or structure, is there between the animalcule and the whale; or between the fungus and the fig-tree? And, à fortiori, between all four?

Finally, if we regard substance, or material composition, what hidden bond can connect the flower which a girl wears in her hair and the blood which courses through her youthful veins; or, what is there in common between the dense and resisting mass of the oak, or the strong fabric of the tortoise, and those broad disks of glassy jelly which may be seen pulsating through the waters of a calm sea, but which drain away to mere films in the hand which raises them out of their element?

propose

Such objections as these must, I think, arise in the mind of every one who ponders, for the first time, upon the conception of a single physical basis of life underlying all the diversities of vital existence; but I to demonstrate to you that, notwithstanding these apparent difficulties, a threefold unity—namely, a unity of power, or faculty, a unity of form, and a unity of substantial composition-does pervade the whole living world.

No very abstruse argumentation is needed, in the first place, to prove that the powers, or faculties, of all kinds of living matter, diverse as they may be in degree, are substantially similar in kind.

Goethe has condensed a survey of all the powers of mankind into the well-known epigram :

"Warum treibt sich das Volk so und schreit? Es will sich ernähren

Kinder zeugen, und die nähren so gut es vermag.

*

Weiter bringt es kein Mensch, stell' er sich wie er auch will."

In physiological language this means, that all the multifarious and complicated activities of man are comprehensible under three categories. Either they are immediately directed towards the maintenance and development of the body, or they effect transitory changes. in the relative positions of parts of the body, or they tend towards the continuance of the species. Even those manifestations of intellect, of feeling, and of will, which we rightly name the higher faculties, are not excluded from this classification, inasmuch as to every one but the subject of them, they are known only as transitory changes in the relative positions of parts of the body. Speech, gesture, and every other form of human action are, in the long run, resolvable into muscular contraction, and muscular contraction is but a transitory change in the relative positions of the parts of a muscle. But the scheme which is large enough to embrace the activities of the highest form of life, covers all those of the lower creatures. The lowest plant, or animalcule, feeds, grows, and reproduces its kind. In addition, all animals manifest those transitory changes of form which we class under irritability and contractility; and, it is more than probable, that when the vegetable world is thoroughly explored, we shall find all plants in possession of the same powers, at one time or other of their existence.

I am not now alluding to such phænomena, at once rare and conspicuous, as those exhibited by the leaflets of the sensitive plant, or the stamens of the barberry, but to much more widely-spread, and, at the same time, more subtle and hidden, manifestations of vegetable contractility. You are doubtless aware that the common nettle owes its stinging property to the innumerable stiff

and needle-like, though exquisitely delicate, hairs which cover its surface. Each stinging-needle tapers from a broad base to a slender summit, which, though rounded at the end, is of such microscopic fineness that it readily penetrates, and breaks off in, the skin. The whole hair consists of a very delicate outer case of wood, closely applied to the inner surface of which is a layer of semifluid matter, full of innumerable granules of extreme minuteness. This semi-fluid lining is protoplasm, which thus constitutes a kind of bag, full of a limpid liquid, and roughly corresponding in form with the interior of the hair which it fills. When viewed with a sufficiently high magnifying power, the protoplasmic layer of the nettle hair is seen to be in a condition of unceasing activity. Local contractions of the whole thickness of its substance pass slowly and gradually from point to point, and give rise to the appearance of progressive waves, just as the bending of successive stalks of corn by a breeze produces the apparent billows of a corn-field.

But, in addition to these movements, and independently of them, the granules are driven, in relatively rapid streams, through channels in the protoplasm which seem to have a considerable amount of persistence. Most commonly, the currents in adjacent parts of the protoplasm take similar directions; and, thus, there is a general stream up one side of the hair and down the other. But this does not prevent the existence of partial currents which take different routes; and, sometimes, trains of granules may be seen coursing swiftly in opposite directions, within a twenty-thousandth of an inch of one another; while, occasionally, opposite streams come into direct collision, and, after a longer or shorter

« EelmineJätka »