Page images

in which palæontology is implicated, must have felt the urgent necessity of some such scrutiny.

First in order, as the most definite and unquestionable of all the results of palæontology, must be mentioned the immense extension and impulse given to botany, zoology, and comparative anatomy, by the investigation of fossil remains. Indeed, the mass of biological facts has been so greatly increased, and the range of biological speculation has been so vastly widened, by the researches of the geologist and palæontologist, that it is to be feared there are naturalists in existence who look upon geology as Brindley regarded rivers. Rivers," said the great engineer, “were made to feed canals ;” and geology, some seem to think, was solely created to advance comparative anatomy.

Were such a thought justifiable, it could hardly expect to be received with favour by this assembly. But it is not justifiable. Your favourite science bas her own great aims independent of all others; and if, notwithstanding her steady devotion to her own progress, she can scatter such rich alms among her sisters, it should be remembered that her charity is of the sort that does not impoverish, but “ blesseth him that gives and him that takes."

Regard the matter as we will, however, the facts remain. Nearly 40,000 species of animals and plants have been added to the Systema Naturæ by palæontological research. This is a living population equivalent to that of a new continent in mere number ; equivalent to that of a new hemisphere, if we take into account the small population of insects as yet found fossil, and the

large proportion and peculiar organization of many of the Vertebrata.

But, beyond this, it is perhaps not too much to say that, except for the necessity of interpreting palæontological facts, the laws of distribution would have received less careful study; while few comparative anatomists (and those not of the first order) would have been induced by mere love of detail, as such, to study the minutiæ of osteology, were it not that in such minutiæ lie the only keys to the most interesting riddles offered by the extinct animal world.

These assuredly are great and solid gains. Surely it is matter for no small congratulation that in half a century (for palæontology, though it dawned earlier, came into full day only with Cuvier) a subordinate branch of biology should have doubled the value and the interest of the whole group of sciences to which it belongs.

But this is not all. Allied with geology, palæontology has established two laws of inestimable importance: the first, that one and the same area of the earth's surface has been successively occupied by very different kinds of living beings; the second, that the order of succession established in one locality holds good, approximately, in all.

The first of these laws is universal and irreversible; the second is an induction from a vast number of observations, though it may possibly, and even probably, have to admit of exceptions. As a consequence of the second law, it follows that a peculiar relation frequently subsists between series of strata, containing organic remains, in different localities. The series resemble one another, not only in virtue of a general resemblance of the organic remains in the two, but also in virtue of a resemblance in the order and character of the serial succession in each. There is a resemblance of arrangement; so that the separate terms of each series, as well as the whole series, exhibit a correspondence.

Succession implies time; the lower members of a series of sedimentary rocks are certainly older than the upper; and when the notion of age was once introduced as the equivalent of succession, it was no wonder that correspondence in succession came to be looked upon as correspondence in age, or “contemporaneity.” And, indeed, so long as relative age only is spoken of, correspondence in succession is correspondence in age; it is relative contemporaneity.

But it would have been very much better for geology if so loose and ambiguous a word as “contemporaneous had been excluded from her terminology, and if, in its stead, some term expressing similarity of serial relation, and excluding the notion of time altogether, had been employed to denote correspondence in position in two or more series of strata.

In anatomy, where such correspondence of position has constantly to be spoken of, it is denoted by the word “homology” and its derivatives ; and for Geology (which after all is only the anatomy and physiology of the earth) it might be well to invent some single word, such as “homotaxis” (similarity of order), in order to express an essentially similar idea. This, however, has not been done, and most probably the inquiry will at once be made-To what end burden science with

a new and strange term in place of one old, familiar, and part of our common language ?

The reply to this question will become obvious as the inquiry into the results of palæontology is pushed further.

Those whose business it is to acquaint themselves specially with the works of palæontologists, in fact, will be fully aware that very few, if any, would rest satisfied with such a statement of the conclusions of their branch of biology as that which has just been given.

Our standard repertories of palæontology profess to teach us far higher things—to disclose the entire succession of living forms upon the surface of the globe ; to tell us of a wholly different distribution of climatic conditions in ancient times; to reveal the character of the first of all living existences; and to trace out the law of progress from them to us.

It may not be unprofitable to bestow on these professions a somewhat more critical examination than they have hitherto received, in order to ascertain how far they rest on an irrefragable basis ; or whether, after all, it might not be well for palæontologists to learn å little more carefully that scientific “ars artium,” the

, art of saying “I don't know.” And to this end let us define somewhat more exactly the extent of these pretensions of palæontology.

Every one is aware that Professor Bronn's “Untersuchungen” and Professor Pictet's "Traité de Paléontologie” are works of standard authority, familiarly consulted by every working palæontologist. It is desirable to speak of these excellent books, and of their distinguished authors, with the utmost respect, and in a tone as far as possible removed from carping criticism ; indeed, if they are specially cited in this place, it is merely in justification of the assertion that the following propositions, which may be found implicitly, or explicitly, in the works in question, are regarded by the mass of palæontologists and geologists, not only on the Continent but in this country, as expressing some of the best-established results of palæontology.


Animals and plants began their existence together, not long after the commencement of the deposition of the sedimentary rocks; and then succeeded one another, in such a manner, that totally distinct faunæ and flora occupied the whole surface of the earth, one after the other, and during distinct epochs of time.

A geological formation is the sum of all the strata deposited over the whole surface of the earth during one of these epochs : a geological fauna or flora is the sum of all the species of animals or plants which occupied the whole surface of the globe, during one of these epochs.

The population of the earth's surface was at first very similar in all parts, and only from the middle of the Tertiary epoch onwards, began to show a distinct distribution in zones.

The constitution of the original population, as well as the numerical proportions of its members, indicates a warmer and, on the whole, somewhat tropical climate, which remained tolerably equable throughout the year. The subsequent distribution of living beings in zones is the result of a gradual lowering of the general

« EelmineJätka »