Page images
PDF
EPUB

class from those which contain existing forms. It is only when we come to the orders, which may be roughly estimated at about a hundred and thirty, that we meet with fossil animals so distinct from those now living as to require orders for themselves; and these do not amount; on the most liberal estimate, to more than about 10 per cent. of the whole.

There is no certainly known extinct order of Protozoa; there is but one among the Coelenterata-that of the rugose corals; there is none among the Mollusca; there are three, the Cystidea, Blastoidea, and Edrioasterida, among the Echinoderms; and two, the Trilobita and Eurypterida, among the Crustacea; making altogether five for the great sub-kingdom of Annulosa. Among Vertebrates there is no ordinally distinct fossil fish: there is only one extinct order of Amphibia-the Labyrinthodonts; but there are at least four distinct orders. of Reptilia, viz. the Ichthyosauria, Plesiosauria, Pterosauria, Dinosauria, and perhaps another or two. There is no known extinct order of Birds, and no certainly known extinct order of Mammals, the ordinal distinctness of the "Toxodontia" being doubtful.

The objection that broad statements of this kind, after all, rest largely on negative evidence is obvious, but it has less force than may at first be supposed; for, as might be expected from the circumstances of the case, we possess more abundant positive evidence regarding Fishes and marine Mollusks than respecting any other forms of animal life; and yet these offer us, through the whole range of geological time, no species ordinarily distinct from those now living; while the far less numerous class of Echinoderms presents three, and the

Crustacea two, such orders, though none of these come down later than the Paleozoic age. Lastly, the Reptilia present the extraordinary and exceptional phænomenon of as many extinct as existing orders, if not more; the four mentioned maintaining their existence from the Lias to the Chalk inclusive.

Some years ago one of your Secretaries pointed out another kind of positive palæontological evidence tending towards the same conclusion-afforded by the existence of what he termed "persistent types" of vegetable and of animal life. He stated, on the authority of Dr. Hooker, that there are Carboniferous plants which appear to be generically identical with some now living; that the cone of the Oolitic Araucaria is hardly distinguishable from that of an existing species; that a true Pinus appears in the Purbecks and a Juglans in the Chalk; while, from the Bagshot Sands, a Banksia, the wood of which is not distinguishable from that of species now living in Australia, had been obtained.

Turning to the animal kingdom, he affirmed the tabulate corals of the Silurian rocks to be wonderfully like those which now exist; while even the families of the Aporosa were all represented in the older Mesozoic

rocks.

Among the Mollusca similar facts were adduced. Let it be borne in mind that Avicula, Mytilus, Chiton, Natica, Patella, Trochus, Discina, Orbicula, Lingula, Rhynchonella, and Nautilus, all of which are existing genera, are given without a doubt as Silurian in the

1 See the abstract of a Lecture "On the Persistent Types of Animal Life" in the "Notices of the Meetings of the Royal Institution of Great Britain," June 3, 1859, vol. iii. p. 151.

last edition of "Siluria;" while the highest forms of the highest Cephalopods are represented in the Lias by a genus, Belemnoteuthis, which presents the closest relation to the existing Loligo.

The two highest groups of the Annulosa, the Insecta and the Arachnida, are represented in the Coal, either by existing genera, or by forms differing from existing genera in quite minor peculiarities.

Turning to the Vertebrata, the only paleozoic Elasmobranch Fish of which we have any complete knowledge is the Devonian and Carboniferous Pleuracanthus, which differs no more from existing Sharks than these do from one another.

Again, vast as is the number of undoubtedly Ganoid fossil Fishes, and great as is their range in time, a large mass of evidence has recently been adduced to show that almost all those respecting which we possess sufficient information, are referable to the same sub-ordinal groups as the existing Lepidosteus, Polypterus, and Sturgeon ; and that a singular relation obtains between the older and the younger Fishes; the former, the Devonian Ganoids, being almost all members of the same sub-order as Polypterus, while the Mesozoic Ganoids are almost all similarly allied to Lepidosteus.1

Again, what can be more remarkable than the singular constancy of structure preserved throughout a vast period of time by the family of the Pycnodonts and by that of the true Coelacanths: the former persisting, with but insignificant modifications, from the Carboniferous to the

1 "Memoirs of the Geological Survey of the United Kingdom.-Decade x. Preliminary Essay upon the Systematic Arrangement of the Fishes of the Devonian Epoch."

R

Tertiary rocks, inclusive; the latter existing, with still less change, from the Carboniferous rocks to the Chalk, inclusive?

Among Reptiles, the highest living group, that of the Crocodilia, is represented, at the early part of the Mesozoic epoch, by species identical in the essential characters of their organization with those now living, and differing from the latter only in such matters as the form of the articular facets of the vertebral centra, in the extent to which the nasal passages are separated from the cavity of the mouth by bone, and in the proportions of the limbs.

And even as regards the Mammalia, the scanty remains of Triassic and Oolitic species afford no foundation for the supposition that the organization of the oldest forms differed nearly so much from some of those which now live as these differ from one another.

It is needless to multiply these instances; enough has been said to justify the statement that, in view of the immense diversity of known animal and vegetable forms, and the enormous lapse of time indicated by the accumulation of fossiliferous strata, the only circumstance to be wondered at is, not that the changes of life, as exhibited by positive evidence, have been so great, but that they have been so small.

Be they great or small, however, it is desirable to attempt to estimate them. Let us, therefore, take each great division of the animal world in succession, and, whenever an order or a family can be shown to have had a prolonged existence, let us endeavour to ascertain how far the later members of the group differ from the

earlier ones. If these later members, in all or in many cases, exhibit a certain amount of modification, the fact is, so far, evidence in favour of a general law of change; and, in a rough way, the rapidity of that change will be measured by the demonstrable amount of modification. On the other hand, it must be recollected that the absence of any modification, while it may leave the doctrine of the existence of a law of change without positive support, cannot possibly disprove all forms of that doctrine, though it may afford a sufficient refutation of many of them.

The PROTOZOA.-The Protozoa are represented throughout the whole range of geological series, from the Lower Silurian formation to the present day. The most ancient forms recently made known by Ehrenberg are exceedingly like those which now exist: no one has ever pretended that the difference between any ancient and any modern Foraminifera is of more than generic value; nor are the oldest Foraminifera either simpler, more embryonic, or less differentiated, than the existing forms.

The CELENTERATA.-The Tabulate Corals have existed from the Silurian epoch to the present day, but I am not aware that the ancient Heliolites possesses a single mark of a more embryonic or less differentiated character, or less high organization, than the existing Heliopora. As for the Aporose Corals, in what respect is the Silurian Palæocyclus less highly organized or more embryonic than the modern Fungia, or the Liassic Aporosa than the existing members of the same families?

The Mollusca.-In what sense is the living Waldheimia less embryonic, or more specialized, than the

« EelmineJätka »