Page images
PDF
EPUB

through the tube. The effect was substantially the same when the air was permitted to bubble through the liquid acid and through the solution of potash.

Thus, on the 5th of October, 1868, successive charges of air were admitted through the potash and sulphuric acid into the exhausted experimental tube. Prior to the admission of the air the tube was optically empty; it contained nothing competent to scatter the light. After the air had entered the tube, the conical track of the electric beam was in all cases clearly revealed. This, indeed, was a daily observation at the time to which I now refer.

I tried to intercept this floating matter in various ways; and on the day just mentioned, prior to sending the air through the drying apparatus, I carefully permitted it to pass over the tip of a spirit-lamp flame. The floating matter no longer appeared, having been burnt up by the flame. It was, therefore, organic matter. When the air was sent too rapidly through the flame, a fine blue cloud was found in the experimental tube. This was the smoke of the organic particles. I was by no means prepared for this result; for I had thought, with the rest of the world, that the dust of our air was, in great part, inorganic and non-combustible.

Mr. Valentin had the kindness to procure for me a small gas-furnace, containing a platinum tube, which could be heated to vivid redness. The tube also contained a roll of platinum gauze, which, while it permitted the air to pass through it, insured the practical contact of the dust with the incandescent metal. The air of the laboratory was permitted to enter the experimental tube, sometimes through the cold, and sometimes through the heated tube of platinum. The rapid

ity of admission was also varied. In the first column of the following table the quantity of air operated on is expressed by the number of inches which the mercury gauge of the air-pump sank when the air entered. In the second column the condition of the platinum tube is mentioned, and in the third the state of the air which entered the experimental tube.

[merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

The phrase "optically empty" shows that when the conditions of perfect combustion were present, the floating matter totally disappeared. It was wholly burnt up, leaving not a trace of residue. From spectrum analysis, however, we know that soda floats in the air; these or ganic dust particles are, I believe, the rafts that support it, and when they are removed it sinks and vanishes.

When the passage of the air was so rapid as to render imperfect the combustion of the floating matter, instead of optical emptiness a fine blue cloud made its appearance in the experimental tube. The following series of results illustrate this point:

[merged small][merged small][ocr errors][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][ocr errors][merged small][ocr errors][ocr errors][ocr errors][ocr errors][merged small][merged small]

At

The optical character of these clouds was totally dif ferent from that of the dust which produced them. right angles to the illuminating beam they discharged

perfectly polarized light. The cloud could be utterly quenched by a transparent Nicol's prism, and the tube containing it reduced to optical emptiness.

The particles floating in the air of London being thus proved to be organic, I sought to burn them up at the focus of a concave reflector. One of the powerfully convergent mirrors employed in my experiments on combustion by dark rays was here made use of, but I failed in the attempt. Doubtless the floating particles are in part transparent to radiant heat, and are so far incombustible by such heat. Their rapid motion through the focus also aids their escape. They do not linger there sufficiently long to be consumed. A flame it was evident would burn them up, but I thought the presence of the flame would mask its own action among the particles.

In a cylindrical beam, which powerfully illuminated the dust of the laboratory, was placed an ignited spiritlamp. Mingling with the flame, and round its rim, were seen wreaths of darkness resembling an intensely black smoke. On lowering the flame below the beam the same dark masses stormed upwards. They were at times blacker than the blackest smoke that I have ever seen issuing from the funnel of a steamer, and their resemblance to smoke was so perfect as to lead the most practiced observer to conclude that the apparently pure flame of the alcohol lamp required but a beam of sufficient intensity to reveal its clouds of liberated carbon. But is the blackness smoke? The question presented itself in a moment. A red-hot poker was placed underneath the beam, and from it the black wreaths also ascended. A large hydrogen flame was next employed, and it produced those whirling masses of darkness far

more copiously than either the spirit-flame or poker. Smoke was, therefore, out of the question.

What, then, was the blackness? It was simply that of stellar space; that is to say, blackness resulting from the absence from the track of the beam of all matter competent to scatter its light. When the flame was placed below the beam the floating matter was destroyed in situ; and the air, freed from this matter, rose into the beam, jostled aside the illuminated particles and subsțituted for their light the darkness due to its own perfect transparency. Nothing could more forcibly illustrate the invisibility of the agent which renders all things visible. The beam crossed, unseen, the black chasm formed by the transparent air, while at both sides of the gap the thick-strewn particles shone out like a luminous solid under the powerful illumination.

But here a difficulty meets us. It is not necessary to burn the particles to produce a stream of darkness. Without actual combustion, currents may be generated which shall exclude the floating matter, and therefore appear dark amid the surrounding brightness. I noticed this effect first on placing a red-hot copper ball below the beam, and permitting it to remain there until its temperature had fallen below that of boiling water. The dark currents, though much enfeebled, were still produced. They may also be produced by a flask filled with hot water.

To study this effect a platinum wire was stretched across the beam, the two ends of the wire being connected with the two poles of a voltaic battery. To regulate the strength of the current a rheostat was placed in the circuit. Beginning with a feeble current the temperature of the wire was gradually augmented, but

before it reached the heat of ignition, a flat stream of air rose from it, which when looked at edgeways appeared darker and sharper than one of the blackest lines of Fraunhofer in the solar spectrum. Right and left of this dark vertical band the floating matter rose upwards, bounding definitely the non-luminous stream of air. What is the explanation? Simply this. The hot wire rarefied the air in contact with it, but it did not equally lighten the floating matter. The convection current of pure air therefore passed upwards among the particles, dragging them after it right and left, but forming between them an impassable black partition. In this way we render an account of the dark currents produced by bodies at a temperature below that of combustion.

Oxygen, hydrogen, nitrogen, carbonic acid, so prepared as to exclude all floating particles, produce the darkness when poured or blown into the beam. Coalgas does the same. An ordinary glass shade placed in the air with its mouth downwards permits the track of the beam to be seen crossing it. Let coal-gas or hydrogen enter the shade by a tube reaching to its top, the gas gradually fills the shade from the top downwards. As soon as it occupies the space crossed by the beam, the luminous track is instantly abolished. Lifting the shade so as to bring the common boundary of gas and air above the beam, the track flashes forth. After the shade is full, if it be inverted, the gas passes upwards like a black smoke among the illuminated particles.

The air of our London rooms is loaded with this organic dust, nor is the country air free from its pollution. However ordinary daylight may permit it to disguise itself, a sufficiently powerful beam causes the air in

« EelmineJätka »