Page images
PDF
EPUB

propellers) was under 12 lb. Its sustaining area, if that of the tail (d) be included, was something like 36 sq. ft., i.e. 3 sq. ft. for every pound. The model was forced by its propellers along a wire at a great speed, but so far as an observer could determine, failed to lift itself, notwithstanding its extreme lightness and the comparatively very great power employed. Stringfellow, however, stated that it occasionally left the wire and was sustained by its aeroplanes alone.

The aerial steamer of Thomas Moy (fig. 45), designed in 1874, consisted of a light, powerful, skeleton frame resting on three wheels; a very effective light engine constructed on a new principle, which dispensed with the old-fashioned, cumbrous boiler; two long, narrow, horizontal aeroplanes; and two comparatively very large aerial screws. The idea was to get up the initial velocity by a preliminary run on the ground. This accomplished it was hoped that the weight of the machine. would gradually be thrown upon the aeroplanes in the same way that the weight of certain birds--the eagle, e.g.-is thrown upon

| models until 1893. These were made largely of steel and aluminium, and one of them in 1896 made the longest flight then recorded for a flying machine, namely, fully half a mile on the Potomac river. The largest aerodrome, intended to carry passengers and to be available for war purposes, was built to the order and at the expense of the American government, which granted a sum of fifty thousand dollars for its construction. Langley's machine shown in fig. 46 was a working model, not intended to carry passengers. In configuration the body-portion

[graphic][ocr errors][ocr errors][subsumed]

FIG. 45.-Moy's Aerial Steamer.

the wings after a few hops and leaps. Once in the air the aeroplanes, it was believed, would become effective in proportion to the speed attained. The machine, however, did not realize the high expectations formed of it, and like all its predecessors it was doomed to failure.

Two of the most famous of the next attempts to solve the problem of artificial flight, by means of aeroplanes, were those of Prof. S. P. Langley and Sir Hiram S. Maxim, who began their aerial experiments about the same time (1889-1890). By 1893-1894 both had embodied their views in models and large flying machines.

Langley, who occupied the position of secretary to the Smithsonian Institution, Washington, U.S.A., made many small flying models and one large one. These he designated" aerodromes." They were all constructed on a common principle, and were provided with extensive flying surfaces in the shape of rigid aeroplanes inclined at an upward angle to the horizon, and more or less fixed on the plan advocated by Henson. The cardinal idea was to force the aeroplanes (slightly elevated at their anterior margins) forwards, kite-fashion, by means of powerful vertical screw propellers driven at high speed-the greater the horizontal speed provided by the propellers, the greater, by implication, the lifting capacity of the aerodrome. The bodies, frames and aeroplanes of the aerodromes were strengthened by vertical and other supports, to which were attached aluminium wires to ensure absolute rigidity so far as that was possible. Langley aimed at great lightness of construction, and in this he succeeded to a remarkable extent. His aeroplanes were variously shaped, and were, as a rule, concavo-convex, the convex surface being directed upwards. He employed a competent staff of highly trained mechanics at the Smithsonian Institution, and great secrecy was observed as to his operations. He flew his smallest models in the great lecture room of the National Museum, and his larger ones on the Potomac river about 40 m. below Washington.

While Langley conducted his preliminary experiments in 1889, he did not construct and test his steam-driven flying

FIG. 46.-Langley's Flying Machine. a, Large aeroplane:
b, Small aeroplane; c, Propelling screws.

closely resembled a mackerel. The backbone was a light but very rigid tube of aluminium steel, 15 ft. in length, and a little more than 2 in. in diameter. The engines were located in the portion of the framework corresponding to the head of the fish; they weighed 60 oz. and developed one horse-power. There were four boilers made of thin hammered copper and weighing a little more than 7 lb each; these occupied the middle portion of the fish. The fuel used was refined gasoline, and the extreme end of the tail of the fish was utilized for a storage tank with a capacity of one quart. There were twin screw propellers, which could be adjusted to different angles in practice, to provide for steering, and made 1700 revolutions a minute. The wings, or aeroplanes, four in number, consisted of light frames of tubular aluminium steel covered with china silk. The pair in front different angles. The machine required to be dropped from a height, were 42 in. wide and 40 ft. from tip to tip. They could be adjusted at or a preliminary forward impetus had to be given to it, before it could be started. Fixity of all the parts was secured by a tubular mast extending upwards and downwards through about the middle of the craft, and from its extremities ran stays of aluminium wire to the tips of the aeroplanes and the end of the tubular backbone. By this trussing arrangement the whole structure was rendered exceedingly stiff.

convex, narrow, greatly elongated and square at their free extremities, In the larger aerodrome (fig. 47) the aeroplanes were concavo

PIG. 47.-Langley's Aerodrome in flight. amidships, so to speak. At the first trial of this machine, on the 7th the two propellers, which were comparatively very large, being placed of October 1903. just as it left the launching track it was jerked violently down at the front (being caught, as subsequently appeared, by the falling ways), and under the full power of its engine was pulled into the water, carrying with it its engineer. When the aerodrome rose to the surface, it was found that while the front sustaining surfaces had been broken by their impact with the water, yet the rear ones were comparatively uninjured. At the second and last attempt, on the 8th of December 1903, another disaster, again due to the launching ways, occurred as the machine was leaving the track. This was caught by a portion of the launching car, which caused the rear time the back part of the machine, in some way still unexplained, sustaining surface to break, leaving the rear entirely without support,

and it came down almost vertically into the water. Darkness had
come before the engineer, who had been in extreme danger, could aid
in the recovery of the aerodrome. The boat and machine had drifted
apart, and one of the tugs in its zeal to render assistance had fastened
a rope to the frame of the machine in the reverse position from what
it should have been attached, and had broken the frame entirely in
two. Owing to lack of funds further trials were abandoned (see
Annual Report of the Smithsonian Institution, 1904, p. 122).
Sir Hiram S. Maxim, like Langley, employed a staff of highly
skilled workmen. His machine (fig. 48) consisted of a platform, on
which stood a large water-tube boiler, a number of concavo-convex
aeroplanes arranged in tiers like shelves, each making a slight upward
angle with the horizon, two very large vertical screws placed aft and
propelled by steam engines, tanks for the storage of water, naphtha,
&c. The boiler was especially noteworthy. The water was contained
in about 2000 bent copper tubes, only in. in external diameter,
heated by over 7000 gas jets arranged in rows. The fuel was naphtha
or gasoline. Steam could be got up in the short space of half a minute.
The steam-generating appliances, which weighed only 1000 lb in
all, were placed in the front of the machine. The motive power was

FIG. 48.-Sir H. Maxim's Flying Machine.

[ocr errors]

machine had run about 900 ft. one of the rear axletrees, which were
of 2 in. steel tubing, doubled up and set the rear end of the machine
completely free. When the machine had travelled about 1000 ft.,
the left-hand forward wheel became disengaged from the safety
track, and shortly after this the right-hand wheel broke the upper
track-3 in. by 9 in. Georgia pine-and a plank became entangled
in the framework of the machine. Steam had already been shut off,
and the machine coming to rest fell directly to the ground, all four
of its wheels sinking deeply into the turf without leaving other
marks. Before making this run the wheels which were to engage the
upper track were painted, and the paint left by them on the upper
track indicated the exact point where the machine lifted. The area
of the aeroplanes was very nearly planes therefore lifted 2.5 lb per
ft. and the total lifting
effect was fully 10,000 lb. The
sq. ft., and 5 lb for each pound thrust. Nearly half of the power of
the engines was lost in the screw slip. This showed that the diameter
of the screws was not great enough; it should have been at least 22 ft.
In 1897 M. C. Ader, who had already tested, with indifferent
results, two full-sized flying machines, built a third apparatus
with funds furnished by the French government. This repro-.
duced the structure of a bird with almost servile imitation, save
that traction was obtained by two screw-propellers. The steam
engine weighed about 7 b per horse-power, but the equilibrium
of the apparatus was defective.

Largely with the view of studying the problem of maintaining equilibrium, several experimenters, including Otto Lilienthal, Percy Pilcher and Octave Chanute, cultivated gliding flight by means of aeroplanes capable of sustaining a man. They depended mainly on the utilization of natural air currents, trustighting for stability and balance to movements in their own bodies, or in portions of their machines which they could control. They threw themselves from natural or artificial elevations, or, facing the wind, they ran or were dragged forwards against it until they got under way and the wind caught hold of their aeroplanes. To Lilienthal in Germany belongs the double credit of demonstrating the superiority of arched over flat surfaces, and of reducing gliding flight to regular practice. He made over 2000 glides safely, using gravity as his motive power, with concave, batlike wings, in some cases with superposed surfaces (fig. 49).

[graphic]

provided by a pair of two-cylinder, compound engines, poised about
8 ft. from the ground, and about 6 ft. apart. Each of them was in-
dependently governed, and furnished together 363 horse-power in
actual effect, an amount which, considering that their total weight
was only 600 lb, gave the extraordinary efficiency of over I horse-
power for every 2 lb weight. The high and the low pressure cylinders
were 5 and 8 in. in diameter respectively, and the stroke was 12 in.
When going at full speed these engines conferred 425 revolutions per
minute on the two gigantic propellers that drove the machine along.
These were in appearance like two-bladed marine propellers except
that they were square instead of rounded at the ends, and were broad
and thin. They were built from overlapping strips of American pine,
planed smooth and covered with glued canvas. They weighed
135 lb each, the length of each blade being close upon 9 ft. and the
width at the ends 5 ft. The pitch was 16 ft. They were carefully
stayed by steel wires to their shafts, or the first revolution would have
snapped them off short. The material of which the framework was
built was thin steel tubing, exceedingly light. All the wires and ties
were of the best steel, capable of standing a strain of 100 tons to the
square inch. The body of the machine was oblong in shape, with the
fore-part cut away like a water-chute boat, and a long counter at the
stern over which the propellers revolved. It had canvas stretched all
over it. High overhead, like a gigantic awning, was the slightly
concavo-convex main aeroplane, tilted towards the front at an
imperceptible angle, and stretched taut. Its area was 1400 sq. ft.,
increased by side wings to 2700 sq. ft. There were also side aeroplanes
arranged in tiers, and large aeroplanes in front, which were pivoted
and served for vertical steering. The machine was strengthened in
every direction by vertical and other supports and securely wired
together at all points. It was furnished with four strong flanged
wheels and ran along a light broad-gauge (9 ft.) railway track,
1800 ft. long, in the hope that when the speed reached a certain
point it would leave the rails, but it was prevented from rising more
than an inch or so by four arms, or outriggers, furnished with wheels,
which projected from its sides and ran under an inverted wooden
upper or safety track outside the railway track proper.
At a trial carried out in 1894 at Bexley, Kent, only the main aero-
plane, the fore and aft rudders, and the top and bottom side planes
were in position. After everything had been got in readiness, careful
observers were stationed along the track, and the machine was con-
nected to a dynamometer. The engines were then started and the
pump set so as to deliver over 5000 lb of water per hour into the boiler.
The gas was then carefully turned on until the pressure amounted
to 310 lb per sq. in., and the dynamometer showed a thrust of more
than 2100 lb. A small safety-valve placed in the steam pipe had
been adjusted so as to blow off slightly at 310 lb and with a strong
blast at 320 lb. The signal being given to let go, the machine darted
forward at a terrific pace, and the safety-valve ceased to blow. More
gas was instantly turned on, and before the machine had advanced
300 ft., the steam had mounted to 320 lb per sq. in., and the safety;
valve was blowing off a steady blast. When the machine had
travelled only a few hundred feet, all four of the small outrigger
wheels were fully engaged, which showed that the machine was
lifting at least 8000 lb. The speed rapidly increased until when the

[graphic]

FIG. 49.-Lilienthal's Gliding Machine.

It was with a machine of the latter type that he was upset by a sudden gust of wind and killed in 1896. Pilcher in England improved somewhat on Lilienthal's apparatus, but used the same general method of restoring the balance, when endangered, by shifting the weight of the operator's body. He too made several hundred glides in safety, but finally was thrown over by a gust of wind and killed in 1899. Chanute in America confined his endeavours to the production of automatic stability, and made the surfaces movable instead of the man. He used several different forms of apparatus, including one with five superposed pairs of wings and a tail (fig. 50) and another with two continuous aeroplanes, one above the other (fig. 51). He made over 1000 glides without accident.

Similar experiments were meanwhile conducted by Wilbur and Orville Wright of Dayton, Ohio, in whose hands the glider developed into a successful flying machine. These investigators began their work in 1900, and at an early stage introduced two characteristic features-a horizontal rudder in front for steering in the vertical plane, and the flexing or bending of the ends of

[graphic]

the main supporting aeroplanes as a means of maintaining the | (b) a pair of very light propellers driven at a high speed; and structure in proper balance. Their machines to begin with were merely gliders, the operator lying upon them in a horizontal position, but in 1903 a petrol motor was added, and a flight lasting 59 seconds was performed. In 1905 they made forty-five flights, in the longest of which they remained in the air for half

[ocr errors]

(c) an exceedingly light and powerful petrol engine. The drivet occupied a position in the centre of the arrangement, which is shown in fig. 52. The machine was furnished with two wheels and vertical supports which depended from the anterior parts of the aeroplanes and supported it when it touched the ground

[graphic]

FIG. 50.-Chanute's Multiple Gliding Machine.

an hour and covered a distance of 24 m. The utmost secrecy, however, was maintained concerning their experiments, and in consequence their achievements were regarded at the time with doubt and suspicion, and it was hardly realized that their success would reach the point later achieved.

Thanks, however, to the efforts of automobile engineers, great improvements were now being effected in the petrol engine, and, although the certainty and trustworthiness of its action still left something to be desired, it provided the designers of flying machines with what they had long been looking for-a motor

FIG. 51.-Chanute's Biplane Gliding Machine. very powerful in proportion to its weight. Largely in consequence of this progress, and partly no doubt owing to the stimulus given by the activity of builders of dirigible balloons, the construction of motor-driven aeroplanes began to attract a number of workers, especially in France. In 1906 A. Santos Dumont, after a number of successful experiments with dirigible cigarshaped gas balloons, completed an aeroplane flying machine. It consisted of the following parts:-(a) A system of aeroplanes arranged like the capital letter T at a certain upward angle to the horizon and bearing a general resemblance to box kites;

FIG. 52.-Santos Dumont's Flying Machine.

on either side. With this apparatus he traversed on the 12th of November 1906 a distance of 220 metres in 21 seconds.

About a year later Henry Farman made several short flights on a machine of the biplane type, consisting of two main supporting surfaces one above the other, with a box-shaped vertical rudder behind and two small balancing aeroplanes in front. The engine was an eight-cylinder Antoinette petrol motor, developing 49 horse-power at 1100 revolutions a minute, and driving directly a single metal screw propeller. On the 27th of October 1906 he flew a distance of nearly half a mile at Issy-lesMolineaux, and on the 13th of January 1908 he made a circular flight of one kilometre, thereby winning the Deutsch-Archdeacon prize of £2000. In March he remained in the air for 3 minutes, covering a distance of 1 m.; but in the following month a rival, Leon Delagrange, using a machine of the same type and constructed by the same makers, Messrs Voisin, surpassed this performance by flying nearly 2 m. in 6 minutes. In July Farman remained in the air for over 20 minutes; on the 6th of September Delagrange increased the time to nearly 30 minutes, and on the 29th of the same month Farman again came in front with a flight lasting 42 minutes and extending over nearly 24 m. But the best results were obtained by the Wright brothersOrville Wright in America and Wilbur Wright in France. On the 9th of September 1908 the former, at Fort Myer, Virginia, made three notable flights; in the first he remained in the air 57 minutes and in the second 1 hour 3 minutes, while in the third he took with him a passenger and covered nearly 4 m. in 6 minutes. Three days later he made a flight of 45 m. in 1 hour 14 minutes, but on the 17th he had an accident, explained as being due to one of his propellers coming into contact with a stay, by which his machine was wrecked, he himself seriously injured, and Lieutenant Selfridge, who was with him, killed. Four days afterwards Wilbur Wright at Le Mans in France beat all previous records with a flight lasting 1 hour 31 minutes 25 seconds, in which he covered about 56 m.; and subsequently, on the 11th of October, he made a flight of 1 hour 9 minutes accompanied by a passenger. On the 31st of December he succeeded in remaining in the air for 2 hours 20 minutes 23 seconds.

Wilbur Wright's machine (fig. 53), that used by his brother being essentially the same, consisted of two slightly arched supporting surfaces, each 12 metres long, arranged parallel one above the other at a distance of 1 metres apart. As they were each about 2 metres wide their total area was about 50 sq. metres. About 3 metres in front of them was arranged a pair of smaller horizontal aeroplanes, shaped like a long narrow ellipse, which formed the rudder that effected changes of elevation, the driver being able by means of a lever to incline them up or down according as he desired to ascend or descend. The rudder for lateral steering was placed about 24 metres behind the main surfaces and was formed of two vertical pivoted aeroplanes. The lever by which they were turned was connected with the device by which the ends of the main aeroplanes could be flexed simultaneously though in opposite directions; i.c. if the ends of the aeroplanes on one side were bent downwards, those on the

[graphic]
[blocks in formation]

if one was carried), who sat a little to the left of the same line. Making about 1200 revolutions a minute, it developed about 24 horse-power, and was connected by chain gearing to two wooden propellers, 2 metres in diameter and 3 metres apart, the speed of which was about 450 revolutions a minute. The whole machine, with aeronaut, weighed about 1100 lb, the weight of the motor being reputed to be 200 lb.

A feature of the year 1909 was the success obtained with monoplanes having only a single supporting surface, and it was on a machine of this type that the Frenchman Blériot on July 25th flew across the English Channel from Calais to Dover in 31 minutes. Hubert Latham all but performed the same feat on an Antoinette monoplane. The year saw considerable increases in the periods for which aviators were able to remain in the air, and Roger Sommer's flight of nearly 24 hours on August 7th was surpassed by Henry Farman on November 3rd, when he covered a distance estimated at 1374 m. in 4 hr. 17 min. 53 sec. In both these cases biplanes were employed. Successful aviation meetings were held, among other places, at Reims, Juvisy, Doncaster and Blackpool; and at Blackpool a daring flight was made in a wind of 40 m. an hour by Latham. This aviator also proved the possibility of flying at considerable altitudes by attaining on December 1st a height of over 1500 ft., but this record was far surpassed in the following January by L. Paulhan, who on a biplane rose to a height of 1383 yds. at Los Angeles. In the course of the year three aviators were killed-Lefèvbre and Ferber in September and Fernandez in December; and four men perished in September by the destruction of the French airship "République," the gas-bag of which was ripped open by a broken propeller. In January 1910 Delagrange was killed by the fracture of one of the wings of a monoplane on which he was flying. On April 27th-28th, 1910, Paulhan successfully flew from London to Manchester, with only one stop, within 24 hours, for the Daily Mail's £10,000 prize.

The progress made by all these experiments at aviation had naturally created widespread interest, both as a matter of

[blocks in formation]

sport and also as indicating a new departure in the possibilities of machines of war. And in 1909 the British government appointed a scientific committee, with Lord Rayleigh as chairman, as a consultative body for furthering the development of the science in England.

The table below gives some details, approximately correct, of the principal experiments made with flying machines up to 1908.

REFERENCES.-Some of the books mentioned under AERONAUTICS contain details of flying machines; see H. W. L. Moedebeck, A Pocketbook of Aeronautics, trans. by W. Mansergh Varley (London, 1907); Sir Hiram S. Maxim, Artificial and Natural Flight (London, 1908); F. W. Lanchester, Aerodynamics and Aerodonetics (London, 1907 and 1908); C. C. Turner, Aerial Navigation of To-day (London, 1909); also two papers on "Aerial Navigation" read by Colonel G. O. Fullerton before the Royal United Service Institution in 1892 and 1906; papers read by Major B. F. S. Baden-Powell and E. S. Bruce before the Society of Arts, London, in April 1907 and December 1908 respectively; Cantor Lectures by F. W. Lanchester (Society of Arts, 1909); and the Proceedings of the Aeronautical Society (founded 1865), &c.

The

FLINCK, GOVERT (1615-1660), Dutch painter, born at Cleves in 1615, was apprenticed by his father to a silk mercer, but having secretly acquired a passion for drawing, was sent to Leuwarden, where he boarded in the house of Lambert Jacobszon, a Mennonite, better known as an itinerant preacher than as a painter. Here Flinck was joined by Jacob Backer, and the companionship of a youth determined like himself to be an artist only confirmed his passion for painting. Amongst the neighbours of Jacobszon at Leuwarden were the sons and relations of Rombert Ulenburg, whose daughter Saske married Rembrandt in 1634. Other members of the same family lived at Amsterdam, cultivating the arts either professionally or as amateurs. pupils of Lambert probably gained some knowledge of Rembrandt by intercourse with the Ulenburgs. Certainly J. von Sandrart, who visited Holland in 1637, found Flinck acknowledged as one of Rembrandt's best pupils, and living habitually in the house of the dealer Hendrik Ulenburg at Amsterdam. For many years Flinck laboured on the lines of Rembrandt, following that master's style in all the works which he executed between 1636 and 1648; then he fell into peculiar mannerisms by imitating the swelling forms and grand action of Rubens's creations. Finally he sailed with unfortunate complacency into the Dead Sea of official and diplomatic painting. Flinck's relations with Cleves became in time very important. He was introduced to the court of the Great Elector, Frederick William of Brandenburg, who married in 1646 Louisa of Orange. He obtained the patronage of John Maurice of Orange, who was made stadtholder of Cleves in 1649. In 1652 a citizen of Amsterdam, Flinck married in 1656 an heiress, daughter of Ver Hoeven, a director of the Dutch East India Company. He was already well known even then in the patrician circles over which the burgomasters De Graef and the Echevin Six presided; he was on terms of intimacy with the poet Vondel and the treasurer Uitenbogaard. In his house, adorned with antique casts, costumes, and a noble collection of prints, he often

[blocks in formation]
[blocks in formation]

Sq. ft. 7.5

Ib. 3-85

Mls.

Ft.

[merged small][merged small][merged small][merged small][ocr errors][merged small]
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

received the stadt holder John Maurice, whose portrait is still | (Moreton Bay) and Hervey's Bay. Returning to England he preserved in the work of the learned Barleius.

The earliest of Flinck's authentic pieces is a likeness of a lady, dated 1636, in the gallery of Brunswick. His first subject picture is the "Blessing of Jacob," in the Amsterdam museum (1638). Both are thoroughly Rembrandtesque in effect as well as in vigour of touch and warmth of flesh tints. The four "civic guards" of 1642, and "the twelve musketeers" with their president in an arm-chair (1648), in the town-hall at Amsterdam, are fine specimens of composed portrait groups. But the best of Flinck's productions in this style is the peace of Münster in the museum of Amsterdam, a canvas with 19 life-size figures full of animation in the faces, "radiant with Rembrandtesque colour," and admirably distributed. Flinck here painted his own likeness to the left in a doorway. The mannered period of Flinck is amply illustrated in the " Marcus Curius eating Turnips before the Samnite Envoys," and "Solomon receiving Wisdom," in the palace on the Dam at Amsterdam. Here it is that Flinck shows most defects, being faulty in arrangement, gaudy in tint, flat and shallow in execution, and partial to whitened flesh that looks as if it had been smeared with violet powder and rouge. The chronology of Flinck's works, so far as they are seen in public galleries, comprises, in addition to the foregoing, the Grey Beard" of 1639 at Dresden, the "Girl" of 1641 at the Louvre, a portrait group of a male and female (1646) at Rotterdam, a lady (1651) at Berlin. In November 1659 the burgomaster of Amsterdam contracted with Flinck for 12 canvases to represent four heroic figures of David and Samson and Marcus Curius and Horatius Cocles, and scenes from the wars of the Batavians and Romans. Flinck was unable to finish more than the sketches. In the same year he received a flattering acknowledgment from the town council of Cleves on the completion of a picture of Solomon which was a counterpart of the composition at Amsterdam. This and other pictures and portraits, such as the likenesses of Frederick William of Brandenburg and John Maurice of Nassau, and the allegory of "Louisa of Orange attended by Victory and Fame" and other figures at the cradle of the first-born son of the elector, have disappeared. Of several pictures which were painted for the Great Elector, none are preserved except the "Expulsion of Hagar" in the Berlin museum. Flinck died at Amsterdam on the 22nd of February

46

1660.

FLINDERS, MATTHEW (1774-1814), English navigator, explorer, and man of science, was born at Donington, near Boston, in Lincolnshire, on the 16th of March 1774. Matthew was at first designed to follow his father's profession of surgeon, but his enthusiasm in favour of a life of adventure impelled him to enter the royal navy, which he did on the 23rd of October 1789. After a voyage to the Friendly Islands and West Indies, and after serving in the " Bellerophon" during Lord Howe's "glorious first of June" (1794) off Ushant, Flinders went out in 1795 as midshipman in the "Reliance" to New South Wales. For the next few years he devoted himself to the task of accurately laying down the outline and bearings of the Australian coast, and he did his work so thoroughly that he left comparatively little for his successors to do. With his friend George Bass, the surgeon of the "Reliance," in the year of his arrival he explored George's river; and, after a voyage to Norfolk Island, again in March 1796 the two friends in the same boat, the "Tom Thumb," only 8 ft. long, and with only a boy to help them, explored a stretch of coast to the south of Port Jackson. After a voyage to the Cape of Good Hope, when he was promoted to a lieutenancy, Flinders was engaged during February 1798 in a survey of the Furneaux Islands, lying to the north of Tasmania. His delight was great when, in September of the same year, he was commissioned along with Bass, who had already explored the sea between Tasmania and the south coast to some extent and inferred that it was a strait, to proceed in the sloop "Norfolk (25 tons) to prove conclusively that Van Diemen's Land was an island by circumnavigating it. In the same sloop, in the summer of next year, Flinders made an exploration to the north of Port Jackson, the object being mainly to survey Glasshouse Bay

"

was appointed to the command of an expedition for the thorough exploration of the coasts of Terra Australis, as the southern continent was still called, though Flinders is said to have been the first to suggest for it the name Australia. On the 18th of July 1801 the sloop Investigator" (334 tons), in which the expedition sailed, left Spithead, Flinders being furnished with instructions and with a passport from the French government to all their officials in the Eastern seas. Among the scientific staff was Robert Brown, one of the most eminent English botanists; and among the midshipmen was Flinders's relative, John Franklin, of Arctic fame. Cape Leeuwin, on the southwest coast of Australia, was reached on November 6, and King George's sound on the 9th of December. Flinders sailed round the Great Bight, examining the islands and indentations on the east side, noting the nature of the country, the people, products, &c., and paying special attention to the subject of the variation of the compass. Spenser and St Vincent Gulfs were discovered and explored. On the 8th of April 1802, shortly after leaving Kangaroo Islands, at the mouth of St Vincent Gulf, Flinders fell in with the French exploring ship, "Le Géographe," under Captain Nicolas Baudin, in the bay now known as Encounter Bay. In the narrative of the French expedition published in 1807 (when Flinders was a prisoner in the Mauritius) by M. Peron, the naturalist to the expedition, much of the land west of the point of meeting was claimed as having been discovered by Baudin, and French names were extensively substituted for the English ones given by Flinders. It was only in 1814, when Flinders published his own narrative, that the real state of the case was fully exposed. Flinders continued his examination of the coast along Bass's Strait, carefully surveying Port Phillip. Port Jackson was reached on the 9th of May 1802.

After staying at Port Jackson for about a couple of months, Flinders set out again on the 22nd of July to complete his circumnavigation of Australia. The Great Barrier Reef was examined with the greatest care in several places. The northcast entrance of the Gulf of Carpentaria was reached early in November; and the next three months were spent in an examination of the shores of the gulf, and of the islands that skirt them. An inspection of the "Investigator" showed that she was in so leaky a condition that only with the greatest precaution could the voyage be completed in her. Flinders completed the survey of the Gulf of Carpentaria, and after touching at the island of Timor, the "Investigator" sailed round the west and south of Australia, and Port Jackson was reached on the 9th of June 1803. Much suffering was endured by nearly all the members of the expedition: a considerable proportion of the men succumbed to disease, and their leader was so reduced by scurvy that his health was greatly impaired.

Flinders determined to proceed home in H.M.S. "Porpoise " as a passenger, submit the results of his work to the Admiralty, and obtain, if possible, another vessel to complete his exploration of the Australian coast. The "Porpoise" left Port Jackson on the 10th of August, accompanied by the H.E.I.C.'s ship" Bridgewater" (750 tons) and the "Cato" (450 tons) of London. On the night of the 17th the " Porpoise" and "Cato" suddenly struck on a coral reef and were rapidly reduced to wrecks. The officers and men encamped on a small sandbank near, 3 or 4 ft. above high-water, a considerable quantity of provisions, with many of the papers and charts, having been saved from the wrecks. The reef was in about 22° 11' S. and 155° E., and about 800 m. from Port Jackson. Flinders returned to Port Jackson in a six-oared cutter in order to obtain a vessel to rescue the party. The reef was again reached on the 8th of October, and all the officers and men having been satisfactorily disposed of, Flinders on the 11th left for Jones Strait in an unsound schooner of 29 tons, the "Cumberland," with ten companions, and a valuable collection of papers, charts, geological specimens, &c. On the 15th of December he put in at Mauritius, when he discovered that France and England were at war. The passport he possessed from the French government was for the "Investigator "; still, though he was now on board another ship, his mission was

« EelmineJätka »