Page images
PDF
EPUB

thing. This weight will estimate the force with which he can draw horizontally by a rope over his shoulder.* Let a child who tries this, walk on the board with dry shoes; let him afterwards chalk his shoes, and afterwards try it with his shoes soaped: he will find that he can pull with different degrees of force in these different circumstances; but when he tries the following experiments, let his shoes be always dry, that his force may be always the

same.

To shew the power of the three different sorts of Levers. EXPERIMENT II.

Instead of putting the cord that comes from the scalebeam, as in the last experiment, over the shoulder of the boy, hook it to the end 1 of the lever L, Fig. 2. Plate 2. This lever is passed through a socket-Plate 2. Fig. 3.in which it can be shifted from one of its ends towards the other, and can be fastened at any place by the screw of the socket. This socket has two gudgeons, upon which it, and the lever which it contains, can turn. This socket and its gudgeons can be lifted out of the holes in which it plays, between the rail RR, Plate 2. Fig. 2. and may be put into other holes at R R, Fig. 5. Loop another rope to the other end of this lever, and let the boy pull as before. Perhaps it should be pointed out, that the boy must walk in a direction contrary to that in which he walked before, viz. from 1 towards 3. The height to which the weight ascends, and the distance to which the boy advances, should be carefully marked and measured; and

* Were it thought necessary to make these experiments perfectly accurate, a segment of a pulley, the radius of which is half the length of the scale-beam, should be attached to the end of the beam; upon which the cord may apply itself, and the pulley (P3) should be raised or lowered, to bring the rope horizontally from the man's shoulder when in the attitude of drawing.

and it will be found, that he can raise the weight to the same height, advancing through the same space as in the former experiment. In this case, as both ends of the lever moved through equal spaces, the lever only changed the direction of the motion, and added no mechanical power to the direct strength of the boy. EXPERIMENT III.

Shift the lever to its extremity in the socket; the middle of the lever will be now opposite to the pulley, Pl. 2. Fig. 4 -hook to it the rope that goes through the pulley P 3, and fasten to the other end of the lever the rope by which the boy is to pull. This will be a lever of the second kind, as it is called in books of mechanics; in using which, the resistance is placed between the centre of motion or fulcrum, and the moving power. He will now raise double the weight that he did in Experiment II, and he will advance through double the space.

EXPERIMENT IV.

Shift the lever, and the socket which forms the axis (without shifting the lever from the place in which it was in the socket in the last experiment) to the holes that are prepared for it at R R, Plate 2. Fig. 5. The free end of the lever E will now be opposite to the rope, and to the pulley (over which the rope comes from the scale-beam.) Hook this rope to it, and hook the rope by which the boy pulls, to the middle of the lever. The effect will now be different from what it was in the two last experiments; the boy will advance only half as far, and will raise only half as much weight as before. This is called a lever of the third sort. The first and second kinds of levers are used in quarrying; and the operations of many tools may be referred to them. The third kind of lever is employed but seldom, but its properties may be observed with advantage whilst a long ladder is raised, as the man who raises it, is obliged to exert an increasing force until the ladder

ladder is nearly perpendicular. When this lever is used, it is obvious, from what has been said, that the power must always pass through less space than the thing which is to be moved; it can never, therefore, be of service in gaining power. But the object of some machines, is to increase velocity, instead of obtaining power, as in a sledge-hammer moved by mill-work. (V. the plates in Emerson's Mechanics, No. 236.)

The experiments upon levers may be varied at pleasure, increasing or diminishing the mechanical advantage, so as to balance the power and the resistance, to accustom the learners to calculate the relation between the power and the effect in different circumstances; always pointing out, that whatever excess there is in the power,* or in the resistance, is always compensated by the difference of space through which the inferior passes.

The experiments which we have mentioned, are sufficiently satisfactory to a pupil, as to the immediate relation between the power and the resistance; but the different spaces through which the power and the resistance move when one exceeds the other, cannot be obvious, without they pass through much larger spaces than levers will permit.

EXPERIMENT V.

Place the sledge on the farthest end of the wooden road -Plate 2. Fig. 1.-fasten a rope to the sledge, and conduct it through the lowest pulley P 4, and through the pulley P 3, so as that the boy may be enabled to draw it by the rope passed over his shoulder. The sledge must now be loaded, until the boy can but just advance with short steps steadily upon the wooden road; this must be done with care, as there will be but just room for him beside the

rope.

* The word power is here used in a popular sense, to denote the strength or efficacy that is employed to produce an effect by means of any engine.

rope. He will meet the sledge exactly on the middle of the road, from which he must step aside to pass the sledge. Let the time of this experiment be noted. It is obvious that the boy and the sledge move with equal velocity; there is, therefore, no mechanical advantage obtained by the pulleys. The weight that he can draw will be about half a hundred, if he weigh about 9 stone; but the exact force with which the boy draws, is to be known by Experiment I.

The wheel and axle.

This organ is usually called in mechanics, The axis in peritrochio. A hard name, which might well be spared, as the word windlass or capstan would convey a more distinct idea to our pupils.

EXPERIMENT VI.

To the largest drum, Plate 2. Fig. 1. fasten a cord, and pass it through the pulley P downwards, and through the pulley P 4 to the sledge placed at the end of the wooden road, which is farthest from the machine. Let the boy, by a rope fastened to the extremity of one of the arms of the capstan, and passed over his shoulder, draw the capstan round; he will wind the rope round the drum, and draw the sledge upon its road. To make the sledge advance twenty-four feet upon its road, the boy must have walked circularly 144 feet, which is six times as far, and he will be able to draw about three hundred weight, which is six times as much as in the last experiment.

It may now be pointed out, that the difference of space, passed through by the power in this experiment, is exactly equal to the difference of weight, which the boy could draw without the capstan.

EXPERIMENT VII.

Let the rope be now attached to the smaller drum ; the boy will draw nearly twice as much weight upon the sledge as before, and will go through double the space.

EXPERIMENT EXPERIMENT VIII.

Where there are a number of boys, let five or six of them, whose power of drawing (estimated as in Experiment I) amounts to six times as much as the force of the boy at the capstan, pull at the end of the rope which was fastened to the sledge; they will balance the force of the boy at the capstan: either they, or he, by a sudden pull, may advance, but if they pull fairly, there will be no advantage on either part. In this experiment, the rope should pass through the pulley P 3, and should be coiled round the larger drum. And it must be also observed, that in all experiments upon the motion of bodies, in which there is much friction, as where a sledge is employed, the results are never so uniform as in other cir

cumstances.

The Pulley.

Upon the pulley we shall say little, as it is in every body's hands, and experiments may be tried upon it without any particular apparatus. It should, however, be distinctly inculcated, that the power is not increased by a fixed pulley. For this purpose, a wheel without a rim, or, to speak with more propriety, a number of spokes fixed in a nave, should be employed. (Plate 2. Fig. 9.) Pieces like the heads of crutches should be fixed at the ends of these spokes, to receive a piece of girth-web, which is used instead of a cord, because a cord would be unsteady; and a strap of iron with a hook to it should play upon the centre, by which it may at times be suspended, and from which at other times a weight may be hung.

EXPERIMENT IX.

Let this skeleton of a pulley be hung by the iron strap from the transom of the frame; fasten a piece of web to one of the radii, and another to the end of the opposite radius. If two boys of equal weight pull these pieces of girthVol. II. web,

M

« EelmineJätka »