Page images

The Papilios which resemble them belong to a very distinct section of the genus, in which the sexes differ greatly; and it is those females only which differ most from the males, and which have already been alluded to as exhibiting instances of dimorphism, which resemble species of the other group.

The resemblance of P. Romulus to P. Hector is, in some specimens, very considerable, and has led to the two species being placed following each other in the British Museum Catalogues and by Mr. E. Doubleday. I have shown, however, that P. Romulus is probably a dimorphic form of the female P. Pammon, and belongs to a distinct section of the genus.

The next pair, Papilio Theseus, and P. Antiphus, have been united as one species both by De Haan and in the British Museum Catalogues. The ordinary variety of P. Theseus found in Java almost as nearly resembles P. Diphilus, inhabiting the same country. The most interesting case, however, is the extreme female form of P. Memnon (figured by Cramer under the name of P. Achates), which has acquired the general form and markings of P. Coon, an insect which differs from the ordinary male P. Memnon, as much as any two species which can be chosen in this extensive and highly varied genus; and, as if to show that this resemblance is not accidental, but is the result of law, when in India we find a species closely allied to P. Coon, but with red instead of yellow spots (P. Doubledayi), the corresponding variety of P. Androgeus (P. Achates, Cramer, 182, A, B,) has acquired exactly the same peculiarity of having red spots instead of yellow. Lastly, in the island of Timor, the female of P. CEnomaus (a species allied to P. Memnon) resembles so closely P. Liris (one of the Polydorus-group), that the two, which were often seen flying together, could only be distinguished by a minute comparison after being captured.

The last six cases of mimicry are especially instructive, because they seem to indicate one of the processes by which dimorphic forms have been produced. When, as in these cases, one sex differs much from the other, and varies greatly itself, it may happen that occasionally individual variations will occur having a distant resemblance to groups which are the objects of mimicry, and which it is therefore advantageous to resemble. Such a variety will have a better chance of preservation; the individuals possessing it will be multiplied; and their accidental likeness to the favoured group will be rendered permanent by hereditary transmission, and, each successive variation which increases the resemblance being preserved, and all variations departing from the favoured type having less chance of preservation, there will in time result those singular cases of two or more isolated and fixed forms, bound together by that intimate relationship which constitutes them the sexes of a single species. The reason why the females are more subject to this kind of modification than the males is, probably, that their slower flight, when laden with eggs, and their exposure to attack while in the act of depositing their

upon leaves, render it especially advantageous for them to have some additional protection. This they at once obtain by acquiring a resemblance to other species which, from whatever cause, enjoy a comparative immunity from persecution.

Concluding remarks on Variation in Lepidoptera.

This summary of the more interesting phenomena of variation presented by the eastern Papilionidas is, I think, sufficient to substantiate my position, that the Lepidoptera are a group that offer especial facilities for such inquiries; and it will also show that they have undergone an amount of special adaptive modification rarely equalled among the more highly organized animals. And, among the Lepidoptera, the great and pre-eminently tropical families of Papilionidae and Danaidae seem to be those in which complicated adaptations to the surrounding organic and inorganic universe have been most completely developed, offering in this respect a striking analogy to the equally extraordinary, though totally different, adaptations which present themselves in the Orchideae, the only family of plants in which mimicry of other organisms appears to play any important part, and the only one in which cases of conspicuous polymorphism occur; for as such we must class the male, female, and hermaphrodite forms of Catasetum tridentatum, which differ so greatly in form and structure that they were long considered to belong to three distinct genera.

Arrangement and Geographical Distribution of ihe Malayan Papilionidce.

Arrangement.—Although the species of PapilionidEe inhabiting the Malayan region are very numerous, they all belong to three out of the nine genera into which the family is divided. One of the remaining genera (Eurycus) is restricted to Australia, and another (Teinopalpus) to the Himalayan Mountains, while no less than four (Parnassius, Doritis, Thais, and Sericinus) are confined to Southern Europe and to the mountain-ranges of the Palaearctic region.

The genera Ornithoptera and Leptocircus are highly characteristic of Malayan entomology, but are uniform in character and of small extent. The genus Papilio, on the other hand, presents a great variety of forms, and is so richly -represented in the Malay Islands, that more than one-fourth of all the known species are found there. It becomes necessary, therefore, to divide this genus into natural groups before we can successfully study its geographical distribution.

Owing principally to Dr. Horsfield's observations in Java, we are acquainted with a considerable number of the larvae of Papilios; and these furnish good characters for the primary division of the genus into natural groups. The manner in which the hinder wings are plaited or folded back at the abdominal margin, the size of the anal valves, the structure of the antennae, and the form of the wings are also of much service, as well as the character of the flight and the style of colouration. Using these characters, I divide the Malayan Papilios into four sections, and seventeen groups, as follows:—

| Black and green.

Genus Obnithopteba.

a. Priamus-group.
c. Brookeanus-group.

b. Pompeus-group. Black and yellow.

Genus Papilio.

A. Larvae short, thick, with numerous fleshy tubercles;

of a purplish colour.

a. Nox-group. Abdominal fold in male very large;

anal valves small, but swollen; antenna? moderate; wings entire, or tailed; includes the Indian Philoxenus-group.

b. Coon-group. Abdominal fold in male small; anal

valves small, but swollen; antenna? moderate; wings tailed.

c. Polydorus-group. Abdominal fold in male small,

or none; anal valves small or obsolete, hairy; wings tailed or entire.

B. Larva? with third segment swollen, transversely or

obliquely banded; pupa much bent. Imago with abdominal margin in male plaited, but not reflexed; body weak; antenna? long; wings much dilated, often tailed.

d. Ulysses-group.

e. Peranthus-group.

f. Memnon-group.

Protenor - group (Indian) is somewhat intermediate between these, and is nearest to the Nox-group. g. Helenus-group. h. Erectheus-group. i. Pammon-group. k. Demolion-group. C. Larva? subcylindrical, variously coloured. Imago with abdominal margin in male plaited, but not reflexed; body weak; antenna? short, with a thick curved club; wings entire.

« EelmineJätka »