Page images

protection has played, in determining the external form and colouration, and sometimes even the internal structure of animals.

As illustrating this latter point, I may refer to the remarkable hooked, branched, or star-like spiculæ in many sponges, which are believed to have the function chiefly, of rendering them unpalatable to other creatures. The Holothuridæ or sea-cucumbers possess a similar protection, many of them having anchor-shaped spicules embedded in their skin, as the Synapta ; while others (Cuviera squamata) are covered with a hard calcareous pavement. Many of these are of a bright red or purple colour, and are very conspicuous, while the allied Trepang, or Beche-de-mer (Holothuria edulis), which is not armed with any such defensive weapons, is of a dull sand- or mud-colour, so as hardly to be distinguished from the sea bed on which it reposes. Many of the smaller marine animals are protected by their almost invisible transparency, while those that are most brightly coloured will be often found to have a special protection, either in stinging tentacles like Physalia, or in a hard calcareous crust, as in the star fishes.

Females of some Groups require and obtain more Pro

tection than the Males.

In the struggle for existence incessantly going on, protection or concealment is one of the most general and most effectual means of maintaining life; and it is by modifications of colour that this protection can be

most readily obtained, since no other character is subject to such numerous and rapid variations. The case I have now endeavoured to illustrate is exactly analogous to what occurs among butterflies. As a general rule, the female butterfly is of dull and inconspicuous colours, even when the male is most gorgeously arrayed; but when the species is protected from attack by a disagreeable odour, as in the Heliconidæ, Danaidæ and Acroeidæ, both sexes display the same or equally brilliant hues. Among the species which gain a protection by imitating these, the very weak and slow-flying Leptalides resemble them in both sexes, because both sexes alike require protection, while in the more active and strong-winged genera—Papilio, Pieris, and Diademamit is generally the females only that mimic the protected groups, and in doing so often become actually more gay and more conspicuous than the males, thus reversing the usual and in fact almost universal characters of the sexes. So, in the wonderful Eastern leafinsects of the genus Phyllium, it is the female only that so marvellously imitates a green leaf; and in all these cases the difference can be traced to the greater need of protection for the female, on whose continued existence, while depositing her eggs, the safety of the race depends. In Mammalia and in reptiles, however brilliant the colours may be, there is rarely any difference between that of the sexes, because the female is not necessarily more exposed to attack than the male. It may, I think, be looked upon as a confirmation of this view, that no single case is known either in the

above-named genera–Papilio, Pieris, and Diadema-or in any other butterfly, of a male alone, mimicking one of the Danaidæ or Heliconidæ. Yet the necessary colour is far more abundant in the males, and variations always seem ready for any useful purpose. This seems to depend on the general law, that each species and each sex can only be modified just as far as is absolutely necessary for it to maintain itself in the struggle for existence, not a step further. A male insect by its structure and habits is less exposed to danger, and also requires less protection than the female. It cannot, therefore, alone acquire any further protection through the agency of natural selection. But the female requires some extra protection, to balance the greater danger to which she is exposed, and her greater importance to the existence of the species; and this she always acquires, in one way or another, through the action of natural selection.

In his “Origin of Species," fourth edition, p. 241, Mr. Darwin recognises the necessity for protection as sometimes being a cause of the obscure colours of female birds; but he does not seem to consider it so very important an agent in modifying colour as I am disposed to do. In the same paragraph (p. 240), he alludes to the fact of female birds and butterflies being sometimes very plain, sometimes as gay as the males; but, apparently, considers this mainly due to peculiar laws of inheritance, which sometimes continue acquired colour in the line of one sex only, sometimes in both. Without denying the action of such a law (which Mr.

Darwin informs me he has facts to support), I impute the difference, in the great majority of cases, to the greater or less need of protection in the female sex in these groups of animals.


To some persons it will perhaps appear, that the causes to which I impute so much of the external aspect of nature are too simple, too insignificant, and too unimportant for such a mighty work. But I would ask them to consider, that the great object of all the peculiarities of animal structure is to preserve the life of the individual, and maintain the existence of the species. Colour has hitherto been too often looked upon as something adventitious and superficial, something given to an animal not to be useful to itself, but solely to gratify man or even superior beings—to add to the beauty and ideal harmony of nature. If this were the case, then, it is evident that the colours of organized beings would be an exception to most other natural phenomena. They would not be the product of general laws, or determined by ever-changing external conditions ; and we must give up all inquiry into their origin and causes, since (by the hypothesis) they are dependent on a Will whose motives must ever be unknown to us. But, strange to say, no sooner do we begin to examine and classify the colours of natural objects, than we find that they are intimately related to a variety of other phenomena, and are like them strictly subordinated to general laws. I have here

attempted to elucidate some of these laws in the case of birds, and have shown how the mode of nidification has affected the colouring of the female sex in this group. I have before shown to how great an extent, and in how many ways, the need of protection has determined the colours of insects, and of some groups of reptiles and mammalia, and I would now call particular attention to the fact that the gay tints of flowers, so long supposed to be a convincing proof that colour has been bestowed for other purposes than the good of its possessor, have been shown by Mr. Darwin to follow the same great law of utility. Flowers do not often need protection, but very often require the aid of insects to fertilize them, and maintain their reproductive powers in the greatest vigour. Their gay colours attract insects, as do also their sweet odours and honeyed secretions; and that this is the main function of colour in flowers is shown by the striking fact, that those flowers which can be perfectly fertilized by the wind, and do not need the aid of insects, rarely or never have gailycoloured flowers.

This wide extension of the general principle of utility to the colours of such varied groups, both in the animal and vegetable kingdoms, compels us to acknowledge that the reign of law” has been fairly traced into this stronghold of the advocates of special creation. And to those who oppose the explanation I have given of the facts adduced in this essay, I would again respectfully urge that they must grapple with the whole of the facts, not one or two of them only. It will be admitted

« EelmineJätka »