Page images

genus; and that belongs to an Order, “Insectivora,” entirely absent from South America, and to a family, “Centetidæ," all the other species of which inhabit Madagascar only. And as if to add force to this singular correspondence we have one Madagascar species of a beautiful day-flying Moth, Urania, all the other species of which inhabit tropical America. These insects are gorgeously arrayed in green and gold, and are quite unlike any other Lepidoptera upon the globe.

The island of Ceylon generally agrees in its productions with the Southern part of India; yet it has several birds which are allied to Malayan and not to Indian groups, and a fine butterfly of the genus Hestia, as well as several genera of beetles, which are purely Malayan.

Various important groups of animals are distributed in a way not easy to explain. The anthropoid apes in West Africa and Borneo; the tapirs in Malaya and South America; the camel tribe in the deserts of Asia and the Andes; the trogons in South America and Tropical Asia, with one species in Africa; the marsupials in Australia and America, are examples.

The cases here adduced and they might be greatly multiplied) are merely to show the kind of problems with which the naturalist now has to deal; and in order to do so he requires some system of geographical arrangement, which shall serve the double purpose of affording a convenient subdivision of his subject, and at the same time of giving expression to the main results at which he has arrived. Hence the recent discussions on “Zoological Regions,” or, what are the most natural primary divisions of the earth as regards its forms of animal life.

The divisions in use till quite recently were of two kinds; either those ready made by geographers, more especially the quarters or continents of the globe; or those determined by climate and marked out by certain parallels of latitude or by isothermal lines. Either of these methods was better than none at all; but from the various considerations explained in the preceding chapters, it will be evident, that such divisions must have often been very unnatural, and have disguised many

of the most important and interesting phenomena which a study of the distribution of animals presents to us.

The merit of initiating a more natural system, that of determining zoological regions, not by any arbitrary or a priori consideration but by studying the actual ranges of the more important groups of animals, is due to Mr. Sclater, who, in 1857, established six primary zoological regions from a detailed examination of the distribution of the chief genera and families of Birds. Before stating what these regions are, what objections have been made to them, what other divisions have been since proposed, and what are those which we shall adopt in this work, it will be well to consider the general principles which should guide us in the choice between rival systems.

Principles on which Zoological Regions should be formed.It will be evident in the first place that nothing like a perfect zoological division of the earth is possible. The causes that have led to the present distribution of animal life are so varied, their action and reaction have been so complex, that anomalies and irregularities are sure to exist which will mar the symmetry of any rigid system. On two main points every system yet proposed, or that probably can be proposed, is open to objection; they are,-1stly, that the several regions are not of equal rank;—2ndly, that they are not equally applicable to all classes of animals. As to the first objection, it will be found impossible to form any three or more regions, each of which differs from the rest in an equal degree or in the same manner. One will surpass all others in the possession of peculiar families; another will have many characteristic genera; while a third will be mainly distinguished by negative characters. There will also be found many intermediate districts, which possess some of the characteristics of two well-marked regions, with a few special features of their own, or perhaps with none; and it will be a difficult question to decide in all cases which region should possess this doubtful territory, or whether it should be formed into a primary region itself. Again, two regions which have now well-marked points of difference, may be shown to have been much more alike at a comparatively recent geological epoch ;

and this, it may be said, proves their fundamental unity and that they ought to form but one primary region. To obviate some of these difficulties a binary or dichotomous division is sometimes proposed; that portion of the earth which differs most from the rest being cut off as a region equal in rank to all that remains, which is subjected again and again to the same process.

To decide these various points it seems advisable that convenience, intelligibility, and custom, should largely guide us. The first essential is, a broadly marked and easily remembered set of regions; which correspond, as nearly as truth to nature will allow, with the distribution of the most important groups of animals. What these groups are we shall presently explain. In determining the number, extent, and boundaries of these regions, we must be guided by a variety of indications, since the application of fixed rules is impossible. They should evidently be of a moderate number, corresponding as far as practicable with the great natural divisions of the globe marked out by nature, and which have always been recognized by geographers. There should be some approximation to equality of size, since there is reason to believe that a tolerably extensive area has been an essential condition for the development of most animal forms; and it is found that, other things being equal, the numbers, variety and importance of the forms of animal and vegetable life, do hear some approximate relation to extent of area. Although the possession of peculiar families or genera is the main character of a primary zoological region, yet the negative character of the absence of certain families or genera is of equal importance, when this absence does not manifestly depend on unsuitability to the support of the group, and especially when there is now no physical barrier preventing their entrance. This will become evident when we consider that the importance of the possession of a group by one region depends on its absence from the adjoining regions; and if there is now no barrier to its entrance, we may be sure that there has once been one; and that the possession of the area by a distinct and well balanced set of organisms, which must have been slowly

developed and adjusted, is the living barrier that now keeps out intruders.

When it is ascertained that the chief differences which now obtain between two areas did not exist in Miocene or Pliocene times, the fact is one of great interest, and enables us to speculate with some degree of probability as to the causes that have brought about the present state of things; but it is not a reason for uniting these two areas into one region. Our object is to represent as nearly as possible the main features of the distribution of existing animals, not those of any or all past geological epochs. Should we ever obtain sufficient information as to the geography and biology of the earth at past epochs, we might indeed deterinine approximately what were the Pliocene or Miocene or Eocene zoological regions; but any attempt to exhibit all these in combination with those of our own period, must lead to confusion.

The binary or dichotomous system, although it brings out the fundamental differences of the respective regions, is an inconvenient one in its application, and rather increases than obviates the difficulty as to equality or inequality of regions ; for although a, b, c, and d, may be areas of unequal zoological rank, a being the most important, and d the least, yet this inequality will probably be still greater if we first divide them into a, on one side, and b, c, and d, on the other, and then, by another division, make b, an area of the second, and c, and d, of the third rank only.

Coming to the second objection, the often incompatible distribution of different groups of animals, affords ground for opposition to any proposed scheme of zoological regions. There is first the radical difference between land and sea animals; the most complete barriers to the dispersal of the one, sometimes offering the greatest facilities for the emigration of the other, and vice versa. A large number of marine animals, however, frequent shallow water only; and these, keeping near the coasts, will agree generally in their distribution with those inhabiting the land. But among land animals themselves there are very great differences of distribution, due to certain specialities

in their organization or mode of life. These act mainly in two ways,- 1stly, by affecting the facilities with which they can be dispersed, either voluntarily or involuntarily ;—2ndly, by the conditions which enable them to multiply and establish themselves in certain areas and not in others. When both these means of diffusion are at a maximum, the dispersal of a group becomes universal, and ceases to have much interest for us. This is the case with certain groups of fungi and lichens, as well as with some of the lower animals; and in a less degree, as has been shown by Mr. Darwin, with many fresh-water plants and animals. , At the other extreme we may place certain arboreal vertebrata such as sloths and lemurs, which have no means of passing such barriers as narrow straits or moderately high mountains, and whose survival in any new country they might reach, would be dependent on the presence of suitable forests and the absence of dangerous enemies. Almost equally, or perhaps even more restricted, are the means of permanent diffusion of terrestrial molluscs; since these are without any but very rare and accidental means of being safely transported across the sea ; their individual powers of locomotion are highly restricted ; they are especially subject to the attacks of enemies; and they often depend not only on a peculiar vegetation, but on the geological character of the country, their abundance being almost in direct proportion to the presence of some form of calcareous rocks. Between these extremes we find animals possessed of an infinite gradation of powers to disperse and to maintain themselves; and it will evidently be impossible that the limits which best define the distribution of one group, should be equally true for all others.

Which class of Animals is of most importance in determining Zoological Regions.To decide this question we have to consider which groups of animals are best adapted to exhibit, by their existing distribution, the past changes and present physical condition of the earth's surface; and at the same time, by the abundance of their remains in the various tertiary formations will best enable us to trace out the more recent of the series of changes, both of the earth's surface and

« EelmineJätka »