Page images
PDF
EPUB

are examples of the first-named peculiarity; the Azores and the Bermudas of the last ; and the difference can be clearly traced to the frequency and violence of storms in the one case and to the calms or steady breezes in the other.

It appears then, that although birds do not afford us the same convincing proof of the former union of now disjoined lands as we obtain from mammals, yet they give us much curious and suggestive information as to the various and complex modes in which the existing peculiarities of the distribution of animals have been brought about. They also throw much light on the relation between distribution and the external characters of animals; and, as they are often found where mammalia are quite absent, we must rank them as of equal value for the purposes of our present study.

Reptiles. These hold a somewhat intermediate place, as regards their distribution, between mammals and birds, having on the whole rather a wider range than the former, and a more restricted one than the latter.

Snakes appear to have hardly more facilities for crossing the ocean than mammals; hence they are generally absent from oceanic islands. They are more especially a tropical group, and have thus never been able to pass from one continent to another by those high northern and southern routes, which we have seen reason to believe were very effectual in the case of mammalia and some other animals. Hence we find no resemblance between the Australian and Neotropical regions, or between the Palæarctic and Nearctic; while the Western Hemisphere is comparatively poor as regards variety of types, although rich in genera and species. Deserts and high mountains are also very effectual barriers for this group, and their lines of migration have probably been along river valleys, and occasionally across narrow seas by means of floating vegetation.

Lizards, being somewhat less tropical than snakes, may have passed by the northern route during warm epochs. They are also more suited to traverse deserts, and they possess some unknown means of crossing the ocean, as they are not unfrequently found in remote oceanic islands. These various causes have modified their distribution. The Western Hemisphere is much richer in lizards than it is in snakes; and it is also very distinct from the Eastern Hemisphere. The lines of migration of lizards appear to have been along the mountains and deserts of tropical countries, and, under special conditions, across tropical seas from island to island.

Crocodiles are a declining group. They were once more generally distributed, all the three families being found in British Eocene deposits. Being aquatic and capable of living in the sea, they can readily pass along all the coasts and islands of the warmer parts of the globe. Tortoises are equally ancient, and the restriction of certain groups to definite areas seems to be also a recent phenomenon.

Amphibia. · The Amphibia differ widely from Reptiles in their power of enduring cold; one of their chief divisions, the Urodela or Tailed-Batrachia, being confined to the temperate parts of the Northern Hemisphere. To this class of animals the northern and southern routes of migration were open; and we accordingly find a considerable amount of resemblance between South America and Australia, and a still stronger affinity between North America and the Palæarctic continent. The other tropical regions are more distinct from each other; clearly indicating that, in this group, it is tropical deserts and tropical oceans which are the barriers to migration. The class however is very fragmentary, and probably very ancient; so that descendants of once widespread types are now found isolated in various parts of the globe, between which we may feel sure there has been no direct transmission of Batrachia. Remembering that their chief lines of migration have been by northern and southern land-routes, by floating ice, by fresh-water channels, and perhaps at rare intervals by ova being carried by aquatic birds or by violent storms,—we shall be able to comprehend most of the features of their actual distribution.

Fresh-water Fishes. Although it would appear, at first sight, that the means of dispersal of these animals are very limited, yet they share to some extent the wide range of other fresh-water organisms. They are found in all climates; but the tropical regions are by far the most productive, and of these South America is perhaps the richest and most peculiar. There is a certain amount of identity between the two northern continents, and also between those of the South Temperate zone; yet all are radically distinct, even North America and Europe having but a small proportion of their forms in common. The occurrence of allied fresh-water species in remote lands—as the Aphritis of Tasmania and Patagonia, and the Comephorus of Lake Baikal, distantly allied to the mackerels of Northern seas— would imply that marine fishes are often modified for a life in fresh waters; while other facts no less plainly show that permanent fresh-water species are sometimes dispersed in various ways across the oceans, more especially by the northern and southern routes.

The families of fresh-water fishes are often of restricted range, although cases of very wide and scattered distribution also occur. The great zoological regions are, on the whole, very well characterized ; showing that the same barriers are effectual here, as with most other vertebrates. We conclude, therefore, that the chief lines of migration of fresh-water fishes have been across the Arctic and Antarctic seas, probably by means of floating ice as well as by the help of the vast flocks of migratory aquatic birds that frequent those regions. On continents they are, usually, widely dispersed; but tropical seas, even when of small extent, appear to have offered an effectual barrier to their dispersal. The cases of affinity between Tropical America, Africa, Asia, and Australia, must therefore be imputed either to the survival of once widespread groups, or to analogous adaptation to a fresh-water life of wide-spread marine types; and these cases cannot be taken as evidence of any former land connection between such remote continents.

Insects. It has already been shown (Vol. I. pp. 209-213 and Vol. II. pp. 44-48) that the peculiarities of distribution of the various groups of insects depend very much on their habits and general economy. Their antiquity is so vast, and their more important modifications of structure have probably occurred so slowly, that modes of dispersal depending on such a combination of favourable conditions as to be of excessive rarity, may yet have had time to produce large cumulative effects. Their small specific gravity and their habits of flight render them liable to dispersal by winds to an extent unknown in other classes of animals; and thus, what are usually very effectual barriers have been overstepped, and sometimes almost obliterated, in the case of insects. A careful examination will, however, almost always show traces of an ancient fauna, agreeing in character with other classes of animals, intermixed with the more prominent and often more numerous forms whose presence is due to this unusual facility of dispersal.

The effectual migration of insects is, perhaps more than in any other class of animals, limited by organic and physical conditions. The vegetation, the soil, the temperature, and the supply of moisture, must all be suited to their habits and economy; while they require an immunity from enemies of various kinds, which immigrants to a new country seldom obtain. Few organisms have, in so many complex ways, become adapted to their special environment, as have insects. They are in each country more or less adapted to the plants which belong to it; while their colours, their habits, and the very nature of the juices of their system, are all modified so as to protect them from the special dangers which surround them in their native land. It follows, that while no animals are so well adapted to show us the various modes by which dispersal may be effected, none can so effectually teach us the true nature and vast influence of the organic barrier in limiting dispersal.

It is probable that insects have at one time or another taken advantage of every line of migration by which any terrestrial

organisms have spread over the earth, but owing to their small size and rapid multiplication, they have made use of some which are exclusively their own. Such are the passage along mountain ranges from the Arctic to the Antarctic regions, and the dispersal of certain types over all temperate lands. It will perhaps be found that insects have spread over the land surface in directions dependent on our surface zones—forests, pastures, and deserts ;-and a study of these, with a due consideration of the fact that narrow seas are scarcely a barrier to most of the groups, may assist us to understand many of the details of insect-distribution.

Terrestrial Mollusca. The distribution of land-shells agrees, in some features, with that of insects, while in others the two are strongly contrasted. In both we see the effects of great antiquity, with some special means of dispersal ; but while in insects the general powers of motion, both voluntary and involuntary, are at a maximum, in land-molluscs they are almost at a minimum. Although to some extent dependent on vegetation and climate, the latter are more dependent on inorganic conditions, and also to a large extent on the general organic environment. The result of these various causes, acting through countless ages, has been to spread the main types of structure with considerable uniformity over the globe ; while generic and sub-generic forms are often wonderfully localized.

Land-shells, even more than insects, seem, at first sight, to require regions of their own; but we have already pointed out the disadvantages of such a method of study. It will be far more instructive to refer them to those regions and sub-regions which are found to accord best with the distribution of the higher animals, and to consider the various anomalies they present as so many problems, to be solved by a careful study of their habits and economy, and especially by a search after the hidden causes which have enabled them to spread so widely over land and ocean.

The lines of migration which land-shells have followed, can VOL. II.-36

« EelmineJätka »