Page images
PDF
EPUB

maintains that no explanation of these “contrivances” has been or can be given, except on the supposition of a personal contriver, specially arranging the details of each case, although causing them to be produced by the ordinary processes of growth and reproduction.

Now there is a difficulty in this view of the origin of the structure of Orchids which the Duke does not allude to. The majority of flowering plants are fertilized, either without the agency of insects or, when insects are required, without any very important modification of the structure of the flower. It is evident, therefore, that flowers might have been formed as varied, fantastic, and beautiful as the Orchids, and yet have been fertilized without more complexity of structure than is found in Violets, or Clover, or Primroses, or a thousand other flowers. The strange springs and traps and pitfalls found in the flowers of Orchids cannot be necessary per se, since exactly the same end is gained in ten thousand other flowers which do not possess them. Is it not then an extraordinary idea, to imagine the Creator of the Universe contriving the various complicated parts of these flowers, as a mechanic might contrive an ingenious toy or a difficult puzzle? Is it not a more worthy conception that they are some of the results of those general laws which were so co-ordinated at the first introduction of life upon the earth as to result necessarily in the utmost possible development of varied forms?

But let us take one of the simpler cases adduced and see if our general laws are unable to account for it.

A Case of Orchis-structure explained by Natural

Selection. There is a Madagascar Orchis—the Angræcum sesquipedale—with an immensely long and deep nectary. How did such an extraordinary organ come to be developed ? Mr. Darwin's explanation is this. The pollen of this flower can only be removed by the base of the proboscis of some very large moths, when trying to get at the nectar at the bottom of the vessel. The moths with the longest probosces would do this most effectually ; they would be rewarded for their long tongues by getting the most nectar ; whilst on the other hand, the flowers with the deepest nectaries would be the best fertilized by the largest moths preferring them. Consequently, the deepest nectaried Orchids and the longest tongued moths would each confer on the other an advantage in the battle of life. This would tend to their respective perpetuation, and to the constant lengthening of nectaries and probosces. Now let it be remembered, that what we have to account for, is only the unusual length of this organ. A nectary is found in many orders of plants and is especially common in the Orchids, but in this one case only is it more than a foot long. How did this arise? We begin with the fact, proved experimentally by Mr. Darwin, that moths do visit Orchids, do thrust their spiral trunks into the nectaries, and do fertilize them by carrying the pollinia of one flower to the stigma of another. He has further explained the exact mechanism

by which this is effected, and the Duke of Argyll admits the accuracy of his observations. In our British species, such as Orchis pyramidalis, it is not necessary that there should be any exact adjustment between the length of the nectary and that of the proboscis of the insect; and thus a number of insects of various sizes are found to carry away the pollinia and aid in the fertilization. In the Angræcum sesquipedale, however, it is necessary that the proboscis should be forced into a particular part of the flower, and this would only be done by a large moth burying its proboscis to the very base, and straining to drain the nectar from the bottom of the long tube, in which it occupies a depth of one or two inches only. Now let us start from the time when the nectary was only half its present length or about six inches, and was chiefly fertilized by a species of moth which appeared at the time of the plant's flowering, and whose proboscis was of the same length. Among the millions of flowers of the Angræcum produced every year, some would always be shorter than the average, some longer. The former, owing to the structure of the flower, would not get fertilized, because the moths could get all the nectar without forcing their trunks down to the very base. The latter would be well fertilized, and the longest would on the average be the best fertilized of all. By this process alone the average length of the nectary would annually increase, because, the short-nectaried flowers being sterile and the long ones having abundant offspring, exactly the same effect would be produced as if a gardener destroyed the short ones and sowed the seed of the long ones only; and this we know by experience would produce a regular increase of length, since it is this very process which has increased the size and changed the form of our cultivated fruits and flowers.

But this would lead in time to such an increased length of the nectary that many of the moths could only just reach the surface of the nectar, and only the few with exceptionally long trunks be able to suck up a considerable portion.

This would cause many moths to neglect these flowers because they could not get a satisfying supply of nectar, and if these were the only moths in the country the flowers would undoubtedly suffer, and the further growth of the nectary be checked by exactly the same process which had led to its increase. But there are an immense variety of moths, of various lengths of proboscis, and as the nectary became longer, other and larger species would become the fertilizers, and would carry on the process till the largest moths became the sole agents. Now, if not before, the moth would also be affected, for those with the longest probosces would get most food, would be the strongest and most vigorous, would visit and fertilize the greatest number of flowers, and would leave the largest number of descendants. The flowers most completely fertilized by these moths being those which had the longest nectaries, there would in each generation be on the average an increase in the length of the nectaries, and also

an average increase in the length of the probosces of the moths; and this would be a necessary result from the fact that nature ever fluctuates about a mean, or that in every generation there would be flowers with longer and shorter nectaries, and moths with longer and shorter probosces than the average. No doubt there are a hundred causes that might have checked this process before it had reached the point of development at which we find it. If, for instance, the variation in the quantity of nectar had been at any stage greater than the variation in the length of the nectary, then smaller moths could have reached it and have effected the fertilization. Or if the growth of the probosces of the moths had from other causes increased quicker than that of the nectary, or if the increased length of proboscis had been injurious to them in any way, or if the species of moth with the longest proboscis had become much diminished by sonne enemy or other unfavourable conditions, then, in any of these cases, the shorter nectaried flowers, which would have attracted and could have been fertilized by the smaller kinds of moths, would have had the advantage. And checks of a similar nature to these no doubt have acted in other parts of the world, and have prevented such an extraordinary development of nectary as has been produced by favourable conditions in Madagascar only, and in one single species of Orchid. I may here mention that some of the large Sphinx moths of the tropics have probosces nearly as long as the nectary of Angræcum sesquipe

« EelmineJätka »