Page images
PDF
EPUB

These results show how much more stable methane is under the influence of heat than any of the other gaseous hydrocarbons studied. It probably decomposes at first into acetylene and hydrogen, according to the equation

2CH, C2H2+ 3H2,

and then the acetylene either polymerises or decomposes to carbon. and hydrogen, according to the temperature.

These results also explain why it is that the flame of methane when burning at an open tube is practically non-luminous, as, under these conditions, the maximum temperature of the flame is below 1100° C., and no formation of acetylene takes place; whilst with increase of temperature the flame becomes rapidly more and more luminous, so that when burnt in a regenerative burner at 1500° C. the light emitted is of considerable illuminating value.

As a further step in securing factors by which to trace the decomposition, it seemed advisable to attempt to trace the action of heat upon the benzene vapour formed by the polymerisation of the acetylene; and in order to do this, pure hydrogen was allowed to pass through benzene at a known rate and a constant temperature, the amount of benzene in the gas being determined.

Table V.-The Action of Heat upon Hydrogen-borne Benzene.

Percentage of benzene in original gas
Temperature of gas in the decomposing tube 900° C.

5.28

[blocks in formation]
[blocks in formation]

Carbon deposited and oil formed in grams per 100 c.c. of gas.

Carbon
Oil....

0.0
trace

trace
0.012

0.01

0.00

which shows that the diluted benzene breaks down to acetylene, methane, and carbon, and, finally to carbon and hydrogen.

Taking the experimental data, it seemed to show that the primary reaction on heating ethylene is the splitting up of 3 mols. into acetylene and methane,

3CH2C2H2+2CH,

and that the acetylene then polymerises into higher bodies as

[ocr errors]

and that these compounds, by further polymerisation and interactions amongst themselves, of the kind studied by Berthelot and Carnelley,* give rise to a large number of others. As the temperature rises, the methane formed in the primary action splits up into acetylene and hydrogen,

2CH, C2H2+3H2;
=

and when the temperature has reached the decomposing point of the acetylene, which varies with the degree of dilution, polymerisation takes place no longer, but the acetylene splits up directly into carbon and hydrogen, and all the products formed at lower temperatures doing the same thing, the final reaction is

C2H1 = C2+2H2.

An attempt was now made to see how far analytical results would quantitatively bear out the inferences deduced from the foregoing experiments.

To do this, the method adopted was as follows:-The whole apparatus was filled with ethylene. The platinum tube and condensing tube were weighed, and the amount of ethylene in the gas holder measured. The platinum tube was heated to the required temperature, and the gas aspirated through it at a uniform rate of 4.2 c.c. per minute. When sufficient gas had passed through (about 250 c.c.) the stopcocks were turned off, and the amount of gas left in the holder measured. The amount of water displaced from the aspirator was also measured, and in this manner the change in volume was determined. The tube was again weighed, and the gain in weight noted. The platinum tube was also weighed, and then slowly heated to dull redness in a stream of hydrogen, in order to drive off any oil that might have been condensed in it, and again weighed. The tube was now heated to bright redness in a stream of oxygen, in order to burn off carbon, and again weighed. The sample tube was closed, and the contents analysed; the acetylene in the absorption bottles was also determined in the usual way.

Ethylene was first heated to 700-800° C., but no acetylene was formed, no alteration in volume took place, and the gas seemed unacted upon.

The temperature was then raised to 800-900° C., and the following results obtained.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

0.0186 gram of oil 17.3 c.c. of acetylene at 17° C. and 760 mm. 100 vols. of gas after heating condense to 89 vols. gas and 154 vols. acetylene.

Calculating the analysis from a percentage to a basis of 89, we

[blocks in formation]

Taking 7241 from 98.03 25-62 of ethylene decomposed, and, according to the equation 3C2H1 = 2C2H2 + 2CH, 25 62 should give

Calculated 17 vols. of acetylene and 17 vols. of methane
Found.... 15.4

[ocr errors]
[ocr errors]

14

[ocr errors]

the discrepancy in the figures being due to interactions between the products of decomposition, and the result would certainly seem to point to the above equation as representing the initial decomposition. The next temperature tried was 900-1000° C., and the following figures were obtained :

:

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][ocr errors][ocr errors]

0.0363 gram of carbon = 363 c.c. of acetylene at 19° C. and 762

mm.

0.0293 gram of oil = 27.0 c.c. of acetylene at 19° C. and 762 mm.

Calculating these from 100 c.c. of gas to 98.6 c.c. of gas, we get—

[merged small][merged small][merged small][ocr errors][ocr errors]

And calculating the gas analysis in the same manner as before, we obtain :

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

Then the amount of ethylene decomposed is 98-03-15.00 83.03, and this should give

[blocks in formation]

Evidently, therefore, some of the methane has decomposed, forming acetylene and hydrogen. Amount of methane decomposed 55.35— 39.9 15:45,

[blocks in formation]

Adding this acetylene on to that already calculated for the decomposition of ethylene, we get 55·35+7·72 = 6307, a figure nearly equal to the acetylene found.

Taking into consideration the complexity of the changes involved and the difficulty in obtaining great accuracy in gas analysis, these results seem to me to prove that the primary action of heat upon ethylene may be represented by the equation

[blocks in formation]

whilst the final decomposition is as represented by previous ob

[blocks in formation]

and that between these two extremes there occur a large number of interactions due to the polymerisation of the acetylene formed from the ethylene, and also at higher temperatures from the methane, according to the equation

2CH, C2H2+3H2.

In conclusion, I desire to acknowledge my indebtedness to Mr. F. B. Grundy for the assistance he has rendered me in this investigation,

« EelmineJätka »