Page images
PDF
EPUB

this direction until 1824, from which date a number of these vehicles were constructed and used with considerable success, taking the form of stage coaches propelled by steam, and weighing some 3 or 4 tons unloaded. Some of these ran regular passenger services, notably between Cheltenham and Gloucester, attaining average speeds of 10 to 14 m. per hour; but great

|

step being the recognition in 1887 of the advantages of Daimler's system by M. Levassor and his application of that system to the propulsion of a carriage. In the nine years that immediately followed French manufacturers spent large sums of money in experimenting with and developing the motor-car, and by 1896, when the Enabling Act was passed, there were a few practical

[graphic]
[graphic]
[graphic]

FIG. 1.-Trevethick's Steam Carriage of 1802: side view and plan. opposition was met with owing to the narrow prejudice of those whose interests related to horse-haulage, and every obstruction was offered in the shape of prohibitive tolls and legislative enactments. The result was that steam carriages were driven off the roads in favour of railways, although the select committee of the House of Commons appointed in 1831 to inquire into the subject reported completely in favour of their adoption (as did also that of 1873). In 1861 the first Locomotives on Highways Act was passed, but the crushing blow came in 1865, when the legislature prescribed (1) that the number of persons required to drive the locomotive should be increased to three; (2) that a man should precede with a red flag; (3) that the maximum limit of speed should be reduced to 4 m. per hour; and (4) that they should be forbidden ever to blow off steam, &c. These restrictions were confirmed rather than relieved by the 1878 act. Although these acts were created to deal with heavy traction, the famous 1881 appeal in the court of queen's bench placed every type of self-propelled vehicle, from a traction engine down to Bateman's steam tricycle, under their narrow limitations. This resulted in the development of the heavy traction engine, and light motor vehicles were little more heard of in Great Britain. There were a few exceptions, however, notably the steam vehicles of Rickett (1860), Carrett (1861), Tangye (1862), Yarrow (1862), Holt (1866), Todd (1870), Perkins (1870), Mackenzie (1875) and Blackburn (1878), and some electrical carriages made by Elwell (1884), Ward (1886) and Volk (1888). An important departure was that of Butler, who constructed in 1885 what is believed to be the first vehicle (a tricycle) propelled by an internal combustion engine in England (fig. 2); he used the vapour of benzoline exploded electrically. Later, Roots successfully employed heavy oil, as did Knight. The chief prohibitory clauses of the acts were repealed in 1896, when the development of the internal-combustion engine had opened up entirely new prospects and suggested new possibilities.

Gottlieb Daimler's invention in 1885 of the internal-combustion motor using petroleum spirit was the first step towards the production of the modern self-propelled road vehicle, the next

FIG. 2.-Butler's Motor Tricycle of 1885.

vehicles in England but, perhaps, fewer probable buyers. British makers, starting as they did in the wake of the French manufacturers, were able to profit by the experience gained by the latter, and thus to avoid many otherwise inevitable mistakes; they may not be able to claim to have originated many of the fundamental details of the modern motor-car, but their experience was gained at a comparatively small cost.

Gottlieb Daimler's engine marked a great advance in the production of a source of motive power, for its efficiency was large as compared with its total weight, whilst the simplicity of its fuel system brought it within the scope of the person of average mechanical instincts and intelligence, for, even in its early days, the internal-combustion motor did not demand that its user should possess an intimate knowledge of engineering. Daimler fitted one of his motors to a bicycle in 1885, and afterwards applied the system to the propulsion of boats, one or more of which were running on the river Seine in connexion with the Paris Exhibition of 1887. It was this fact that brought the invention to the notice of M. Levassor, of the firm of Panhard & Levassor, makers of wood-working machinery, who saw the possibilities of its application to the propulsion of a road carriage. MM. Panhard & Levassor secured the French patents from Daimler, and M. Levassor devised the transmission system which, as far as its general scheme is concerned, is unaltered to-day, despite many efforts on the part of skilful inventors and designers to secure something better. M. Levassor placed the engine in front, the axis of the crank-shaft being parallel with the side members of the frame of the vehicle. The drive was taken through a clutch to a set of reduction gears and thence to a differential gear on a countershaft from which the road wheels were driven by chains. With all the modifications of details, the combination of clutch, gear-box and transmission remains

unaltered, so that to France, in the person of M. Levassor, must
be given the honour of having led in the development of the
motor-car.
Progress in the improvement of design was slow until the year
1894, when a great impetus was given to the French industry
by the organization, by the Petit Journal, of a trial run of motor
vehicles from Paris to Rouen. The measure of success attained
by the cars caused considerable surprise, and in the year 1895
a race was organized from Paris to Bordeaux and back, a
distance of 744 m., when the winning vehicle covered the journey
at a mean speed of 15 m. per hour. From that date onward,
until 1908, racing played an important part in the development
of the motor-car; in fact, it is not going too far to say that,
up to 1904, it played a vitally important part therein. The
effect was a rapid development in speed, efficiency and reliability,
and others besides the sportsman and the individual seeking for
new sensations were attracted towards the new vehicle. Racing
was not indulged in in England or Scotland, the authorities
having no power to close the roads for the purpose.

radical changes in previously-existing designs. So iar as British makers were concerned, the Mercédès fashion was allowed to predominate, but some of the older French makers were less willing to follow the lead of the great German house. This fact assisted the British makers to forge ahead in their competition with the French. But the great factor in the triumph of British motor engineering arose from the fact that, in England, there was a great wealth of knowledge concerning the properties of steels and steel alloys, and that knowledge, which was advancing all the time, was turned to such good use that it is safe to say that, in only the very best of French cars is the same strength and efficiency obtained from the same weight of metal as would be used in the construction of quite a number of British cars. Lightness of moving parts has led to increased engine efficiency and to economy of fuel, whilst the inert parts of the mechanismthe frame and other fixed details-by being lighter, call for a smaller expenditure of power to overcome their inertia. Apart from the employment of special steels for motor-car construction, in which England took a leading part, many improvements

[graphic][subsumed][merged small]

instance, the multiple-disk clutch, which permits a car to be started without shock, is an English invention, as are the detachable wheel, the spare wheel and the six-cylindered engine. The latter, introduced by the Napier Company and employed extensively by them, by Rolls-Royce and others, has exerted a great influence upon British tastes, because it created a growing dislike to noise, one of the consequences being the rapid development of the silent car.

In July 1902, Mr S. F. Edge, driving a 50 h.p. Napier car, | in design and method have originated in Great Britain. For won the Gordon-Bennett Cup in the course of the open race from Paris to Vienna. This trophy has played an important part in the history of the motor-car. It was offered for competition among cars, entered by recognized National Automobile Clubs, no more than three cars being permitted to represent a country, and every car had to be built entirely in the country of its origin. The length of the race had to be not less than 500 kilometres (310 m.). The first two races in 1900 and 1901 had been won by French cars and, as these contests had been run concurrently with the big city-to-city races, the importance of the Gordon-Bennett race was overshadowed. But it stood out in bold relief when an English car wrested the international trophy from its French rivals in 1902. The Automobile Club of Great Britain and Ireland (now the Royal Automobile Club) at once secured parliamentary sanction for the use of certain roads in Ireland for a limited period, and proceeded to organize a race worthy of the issue at stake. The race was won by the Mercédès car, the latest production of the famous house of Daimler.

The Mercédès car set quite a new fashion, for it showed advancement in a large number of its mechanical details, and many of these details were either copied or used as the basis for

The representatives of Great Britain in the Gordon-Bennett race of 1903 were selected by means of a series of eliminating trials, and in 1904 and 1905 races were held annually in the Isle of Man for the same purpose. In the years 1906, 1907 and 1908 races were held in that island with such limitations on fuel or on the diameter of the cylinders as were calculated to encourage the development of small but efficient transmissions, and it has been conceded generally that these races served an extremely useful purpose.

Concurrently with its development into a reliable, silent, odourless and smokeless power-propelled vehicle, the motor-car gradually came into more general use. It no longer appealed only to a few but gained converts daily, and its final triumph came when it began seriously to displace the horsed vehicle.

becoming the private carriage of the wealthier classes to be used on all occasions.

If the motor-car in the guise of a private carriage has developed at an astonishing rate, its adaptation to the needs of the community, as a public service vehicle, has been even more rapid. The first cabs placed on the streets of London in 1903 were by no means a success, but the cabs constructed by the French house of Renault and first introduced in London in 1906 rapidly effected a revolutionary change in the means of individual transport. Apart from the improved speed of the motor-cabs, they gained popularity because of the use, on each one of them, of the taximeter, showing at a glance the amount of the fare, thus preventing overcharge on the part of the driver. One effect of the employment of motor-cabs and motor-omnibuses has been to reduce slightly the total number of vehicles, and to quicken a large volume of the traffic; it is now being recognized that to increase the speed of the whole of the traffic of London by about 5 m. an hour is practically equivalent to doubling the width of the whole of the main streets.

The new British act of 1903, which was enacted for three years only, was, during the parliamentary session of 1906 and subsequent sessions, continued from year to year because of the difficulty that was experienced in reconciling conflicting views about the control of motor-cars. The 1903 act raised the speed limit to 20 m. per hour and gave the local government board power to close to motor traffic such roads as, on inquiry, might be deemed unsuited therefor, and to impose a speed limit of 10 m. an hour or less in dangerous places, such as narrow streets in a town or through a village. A few serious accidents in England, and many abroad, have kept alive the fear that the motor-car is a dangerous vehicle that should be restrained or held in check by stringent legislation. Thus from 1904 onwards, the motorist was under continuous police supervision. Police traps, or measured distances, over which the motor-car is timed by the police, were established in most of the counties of England, and, whilst, without a doubt, many real offenders were caught, it is equally true that many an innocent driver was unfairly accused, whilst motorists guilty merely of technical infringements of the law were summoned.

The attitude of the police in showing little or no leniency in the application of the law probably, however, did good in other directions, although these were not contemplated either by the law-givers or the police themselves. It considerably limited the use of excessively powerful cars (for example, a 60 or 90 h.p. car that could easily attain 60 m. an hour), and experience has demonstrated the fact that, intersected as England is with a network of narrow roads carrying considerable traffic, there is little opportunity for the full power of such a car to be used. The result has been that the comparatively low-powered vehicle has been developed in efficiency, bringing with it the advantages of economy in running, simplicity of mechanical details, cheapness of maintenance and ease of control and management.

The principle of the internal-combustion engine has not been altered since Daimler's day, but the mechanical details of the engine have undergone constant revision and improvement, until in 1910 it was safe to say that a four-cylindered engine, with a cylinder bore of 4 in., constructed, we will presume, in 1899, might have developed 20 h.p. or less, whereas engines of the same cylinder bore made in 1908 and 1909 actually developed 60 h.p. and more, and the attainment of even greater efficiency was in sight in 1910. Experience showed that the saving of weight meant greater economy in fuel and also in tires, the two principal items in the upkeep of the motor-car. Engine design has undergone unceasing improvement, and constructional methods have been continuously advanced, with the end in view of attaining lightness, not only in the moving parts, but in the inert parts. Lightness in reciprocating parts, such as the pistons, connecting rods and valves, has enormously improved crank-shaft speed. Cylinder castings are now made far lighter, whilst the water jacketing, for dissipating the excess of heat from the cylinder walls, is now

of sufficiently ample proportions and, in consequence, better lubrication of the cylinder walls can be maintained. This again conduced to piston speed. The induction valves of engines of the earlier types were opened under atmospheric pressure, the reduced pressure in the cylinder, caused by the downward movement of the piston, enabling the pressure of the outer atmosphere to open the valve against its light spring, and to carry in a charge of the carburetted air that constituted the explosive mixture. But it was found that the automatic or atmospheric inlet valve opened late on the induction stroke and closed early, so that the engine only received an attenuated charge. One of the earliest improvements in engine design, therefore, was the employment of the mechanically-operated inlet valve operated by a cam exactly as the exhaust valve is operated. This valve could be fully opened as soon as the piston had begun its downward or induction stroke, and could be held open during the momentary period when the piston was at rest at the bottom of the stroke, thus ensuring a full charge of explosive mixture. The method of exploding the charge in the cylinder has undergone revolutionary changes. The first method, that of heating the exterior of a closed tube connected with the cylinder, quickly gave way to electric ignition because it was found that the charges could not be exploded by the hot tube until the piston had reached the top of its stroke, and, at the comparatively high piston speed of these engines, the piston had moved some distance on its downward stroke before the exploded gas had begun to expand. Electric ignition was an improvement because it enabled a "lead" to be given to the explosion, a low voltage current (from four to six volts of about one ampere being sufficient for the purpose) being automatically switched on to the primary circuit of a coil, the induced current in the secondary circuit being of a voltage sufficiently high (calculated at from 5000 to 10,000 volts of a very small amperage) to jump across a gap left in a sparking plug inserted in the cylinder. By rotating the body of the switch (called the contact breaker) the ignition could be timed to suit exactly the speed of the pistons and, in this way, greater piston speed was obtainable. The great development of this system was the introduction by Mr F. R. Simms, in conjunction with Herr Bosch, of the magneto machine, known as the Simms-Bosch magneto, the prototype for many such appliances. This machine, in its simplest elements, produces a low voltage current (assumed to be of about eight or ten volts) by the rotation of an armature in the magnetic field of a set of magnets, the rotation being effected through the timing-gear wheels of the engine. The low tension current is conveyed through a primary circuit inducing the secondary current which is employed for igniting the charges. The advantages of the magneto are, firstly, that the primary current is created by the engine, and that the need for an accumulator as a source of that current is avoided and, secondly, that the spark is more efficient because the faster the armature is revolved the more intense is the primary current and the induced current, consequently, the charge is ignited more rapidly. The magneto machine has almost entirely displaced the accumulator system for ordinary running, although, as the latter makes for easier starting, it is often fitted as an addition.

Great gain in power has been secured from improvements in the lubrication of the internal-combustion engine. It is now recognized that a small supply of oil to the journals and bearings of such an engine is insufficient, but in the early days it was found difficult to give the journals and bearings more oil without too much getting on to the cylinder walls, because the latter were lubricated by the oil that was thrown on to them by the spinning action of the webs of the crank-shaft and by the connecting-rod ends, these latter dipping into a well of oil in the lower part of the crank-case. The modern method has overcome this difficulty. The cranks and connecting-rod ends no longer dip into the oil, for the latter drains away into a sump or reservoir below the base of the crank chamber. Thence it is passed through a filter and pumped to ducts which convey the oil under pressure to the crank-shaft journals. Sometimes it is conducted thence along ducts bored in the crank-shaft and

through the webs and crank-pins, whencé it feeds the connecting- | of the honeycomb type of radiator, by which the water is made rod bearings, enough squirting out to splash on to the cylinder walls. Sometimes, a shallow trough is placed under each connecting-rod end, to hold oil to a certain depth and no more, and a scoop on the big end collects enough oil to effect the lubrication of the connecting-rod bearings and cylinder walls. The aim has been to secure definite lubrication of all moving parts, and, at the same time, to prevent oil being present on the cylinder walls in such quantities as will permit the piston to carry it up into the combustion chamber. Any oil present in the combustion chamber is burnt during the explosion, but, its combustion being imperfect, smokiness of the exhaust is the result. By reducing the oil on the cylinder walls to the minimum necessary for lubrication, smoking has been abolished, whilst clogging, or carbonizing, of the valves has been materially reduced.

Methods of carburation have also undergone improvement, so that the carburation shall not materially vary with varying engine speed. The only other feature in the engine that calls for mention is the method of cooling. With the introduction

to flow through canals an eighth or a sixteenth of an inch wide, the efficiency of the cooling system has been doubled because of the large amount of surface, in a given size of radiator, for dissipating the heat. A fan is generally employed, either situated behind the radiator and driven by the engine, or the flywheel is vaned so as to induce a current of air through the radiator. To deal now with the transmission mechanism, the drive is taken through a clutch and gear-box as in the earliest days, but, for the final drive, chain transmission to the road wheels running on a fixed axle has largely given place to propeller drive on to a live axle. The leather-faced conical clutch, although still employed, has in many cases given way to the multiple-disk clutch in which a number of disks bearing against each other, either flat in section, or (as in the Hele-Shaw clutch) having annular tapered grooves, are contained in an oil-tight box. These plates are capable of being separated laterally from each other when "out of gear," or brought into frictional contact with each other when it is desired to start the car. Metal-to-metal

[ocr errors][subsumed]

FIG. 4.-The 40-50 h.p. Six-cylinder Rolls-Royce Engine (carburettor side, showing also hightension distributor, and position of centrifugal water pump).

cone clutches, expanding metal shoe clutches, single metal plate clutches and coil spring clutches have all at some time found favour with designers wishing to avoid a leather clutch. Hydraulic and electro-magnetic clutches have also been tried, but these have not gained any vogue. In the matter of the gearbox, the sliding into mesh of the gear-wheels as employed by Levassor is still the standard practice, although that pioneer himself regarded the method as barbarous, and looked upon it as a mere temporary expedient. But details of the gear-box have materially improved. A single lever is usually employed. for engag ing any of the forward gears or the reverse, so that the mistake of simultaneously engaging a reverse and a forward gear is not possible. The spur-wheels are generally mounted in pairs on two sleeves, so that, by means of a selector mechanism that compels one sleeve to be brought to the neutral position before the other can be moved, no two gears can ever be engaged together. By means of "dog clutches," the clutch shaft can generally be coupled direct with the bevel-wheel driving the back axle, the "drive" on the highest gear being thus transmitted without passing through any spur-wheels. This reduces noise and frictional losses. Except for cars of great weight, chain transmission is fast dying out, the power being generally transmitted through a propeller shaft (with universal joints at one or both ends) to a bevel-drive on the back axle; such axle being divided into two revolving or "live" axles carrying the differential gear between them. The bevel-wheels, differential gear and live axles are enclosed and run in a lubricant.

Wire suspension wheels are growing considerably in favour, a saving in weight being thus effected. The liability of the pneumatic tire to deflation, through a puncture or burst,

[graphic]
[graphic]

has led to the introduction of detachable rims and detachable | four cylinders (according to the choice of the riders) developing wheels. The detachable rim is borne on the periphery of the wheel (which is bonded) and secured in position by various methods. When the tire is punctured or damaged the rim and tire are removed bodily and replaced by a spare rim with its tire already in position and inflated, a change capable of being effected in five minutes or less. The detachable wheel is mounted upon a shell which fits over and is secured to a sleeve,

some 3 to 8 h.p. with magneto ignition and belt drive. The engine was usually started by the rider running alongside the machine, and causing the machine to rotate the crank-shaft through the belt and pulley until the initial explosion was obtained, when he would jump into the seat. Trailers were employed at first for carrying passengers, but, the length of the combined vehicle being between nine and ten feet, a side-car,

[graphic][subsumed]

FIG. 5.-Plan View of the 40-50 h.p. Six-Cylinder Rolls-Royce Chassis (1910 type). which latter turns and is secured upon the fixed axle. In the case of tire trouble, the wheel intact is removed from the sleeve (which in the case of a driving-wheel carries the driving fittings, the brake-drums, &c.) and a duplicate wheel is substituted. The pneumatic tire has undergone continuous improvement, particularly in the matters of the selection of the material and the proportioning of the strength of the "body" to the work which the tire is to be called upon to perform. Various methods have been devised for the prevention of skidding or " side-slip " on greasy surfaces, and, whilst certain mouldings on the rubber treads have proved advantageous, the method most adopted is that in which a large number of steel studs stand about a quarter of an inch above the surface of the tire.

placed at the side of the cycle and secured thereto by detachable fittings, largely displaced the trailer and also the "fore-car," in which the passenger was carried in a body placed in front of three- and four-wheeled cycles.

[ocr errors]

It will be seen that the general lines of the car of 1889 have not required to be radically altered. Every detail has been improved so that the cars are more efficient, easier to control and manage, and infinitely more comfortable, but, in essence, Levassor's scheme is as good to-day as it was when planned by him.

The steam car is made by five or six British manufacturers at the most, whereas the actual manufacturers of petrol cars in Great Britain numbered at the end of the year 1909 about seventy, whilst some four hundred other firms were actively engaged in the construction of cars and their parts, accessories and sundries. But the steam car appeals to those men who are or have been steam engineers, and to them the management of the steam generator and the burners constitutes no difficulty. The limitations under which the early steam car laboured have, in the main, disappeared, for the modern steamer can travel nearly as far without requiring to refill the boiler as a petrol car can travel without replenishment of the fuel tank. The electric car is still the luxury to be employed in towns and in covering short distances, for the weight of the accumulators has not been greatly reduced, despite sensational announcements made from time to time.

An interesting feature of the motor movement has been the steady growth in popularity of the motor cycle. The motor tricycle was developed up to the year 1903, and then gradually | became displaced by the motor bicycle, which had been introduced in 1901. Motor bicycles gradually increased in popularity; until in numbers they were in excess of cars. The standard machines of 1909 had an air-cooled motor of one, two or even

The rapid growth of the motor movement in Great Britain may be judged from the fact that by the 30th of September 1905 the 74,038, and by the 30th of September 1908, three years afterwards, number of motor vehicles of all kinds registered had totalled to to no less than 154,415. Of these, 137,323 were registered in England and Wales, 10,907 in Scotland, and 6185 in Ireland. 71,405 were private motor-cars; 12,104 were trade motor-cars; 5880 were public service vehicles and 65,026 were motor cycles. A year later (Sept. 30, 1909) the figures showed a further remarkable increase, the total number of vehicles registered in the United Kingdom being 183,773, giving an increase of 29,358 in the year. Of these, private motor-cars numbered 84,840; trade motor-cars 15,181; public service vehicles 8752; and motor cycles 75,000. The numbers registered in England and Wales were: 74,748 private motor-cars; 13,961 trade motor-cars; 8131 public service vehicles and 66,341 motor cycles, or 163,181 in all. The figures for Scotland were: 6157 private motor-cars; 1056 trade motor-cars; 584 public service vehicles and 5296 motor cycles or 13,093 in all. The figures for Ireland were: 3935 private motor-cars; 164 trade motor-cars; 37 public service vehicles and 3363 motor cycles, or 7499. in all. In the year private motor-cars in the United Kingdom increased by 18.8%; trade motor-cars by 25.4%; public service vehicles by 48-8%, and motor-cycles by 15.3%. It is possible to obtain a better idea of the number of motor vehicles in use from the returns of the commissioners of inland revenue. The total number of privately-owned cars for which licences were issued in 1908 was 48,019, of motor cycles 35.784, and of motor-driven hackney carriages 17.300. These figures may be compared with the registration figures already given for the year ending the 30th of September 1908. As accounting partly for the difference, a certain proportion of the registered vehicles (seeing that the figures include all vehicles in use on and after the 1st of January 1904, less those in respect of which the registrations have been cancelled) must have fallen into disuse and some vehicles will have been sold out of the country, whilst others will have been sold and re-registered with different authorities. But the life of the mechanism of a car, in one form or another, is of considerable length (there were, for instance, in use in 1910, as commercial vehicles, motor chassis that were put on the road in 1896), and it is considered that many registered but unlicensed cars remain for years capable of rendering useful service in emergencies or on special occasions, such as at election periods.

In 1906 an act of parliament authorized a census of production, which was taken in 1908, the statistics relating to 1907. These figures show that the output of complete motor vehicles in the United Kingdom in that year was 11.700 completed cars and chassis, and 3600 motor cycles, the total value of the productive work

« EelmineJätka »