Page images
PDF
EPUB

Z

C

Here too, as with the pupa of Papilio Nireus, colours such as scarlet or blue, which do not occur in the immediate environment of the animal, cannot be produced. Somewhat similar changes of colour occur in some prawns and flat-fish, according to the colour of the bottom on which they rest. This is very striking in the Chameleon Shrimp (Mysis Chamaleon), which is grey when on sand, but brown or green when among sea-weed of these two colours. Experiment shows, however, that when blinded the change does not occur, so that here too we probably have a voluntary or reflex sense action. Many cases are known among insects in which the same species has a different tint according to its surroundings, this being particularly marked in some South African locusts which correspond with the colour of the soil wherever they are found; while several caterpillars which feed on two or more plants vary in colour accordingly. Several such changes are quoted by Mr. R. Meldola, in a paper on Variable Protective Colouring in Insects (Proceedings of the Zoological Society of London, 1873, p. 153), and some of them may perhaps be due to a photographic action of the reflected light. In other cases, however, it has been shown that green chlorophyll remains unchanged in the tissues of leaf-eating insects, and being discernible through the transparent integument produces the same colour as that of the food plant.

These peculiar powers of change of colour and adaptation, are however rare and quite exceptional. As a rule there is no direct connection between the colours of organisms and the kind of light to which they are usually exposed. This is well seen in most fishes, and in such marine animals as porpoises, whose backs are always dark, although this part is exposed to the blue and white light of the sky and clouds, while their bellies are very generally white, although these are constantly subjected to the deep blue or dusky green light from the bottom.

It is evident, however, that these two tints have been acquired for concealment and protection. Looking down on the dark back of a fish it is almost invisible, while to an enemy looking up from below the light undersurface would be equally invisible against the light of the clouds and sky. Again, the gorgeous colours of the butterflies which inhabit the depths of tropical forests bear no relation to the kind of light that falls upon them, coming as it does almost wholly from green foliage, dark brown soil, or blue sky; and the bright underwings of many moths which are only exposed at night, contrast remarkably with the sombre tints of the upper wings which are more or less exposed to the various colours of surrounding nature.

We find, then, that neither the general influence of solar light and heat, nor the special action of variously tinted rays, are adequate causes for the wonderful variety, intensity, and complexity, of the colours that everywhere meet us in the animal and vegetable world. Let us therefore take a wider view of these colours, grouping them into classes determined by what we know of their actual uses or special relations to the habits of their possessors. This, which may be termed the functional or biological classification of the colours of living organisms, seems to be best expressed by a division into five groups as follows :---

[blocks in formation]

lent in nature, comprising those of all the white arctic animals, the sandycoloured desert forms, and the green birds and insects of tropical forests. It also comprises thousands of cases of special resemblance-of birds to the surroundings of their nests, and especially of insects to the bark, leaves, flowers, or soil, on or amid which they dwell. Mammalia, fishes, and reptiles, as well as mollusca and other marine invertebrates, present similar phenomena; and the more the habits of animals are investigated, the more numerous are found to be the cases in which their colours tend to conceal them, either from their enemies or from the creatures they prey upon. One of the last-observed and most curious of these protective resemblances has been communicated to me by Sir Charles Dilke. He was shown in Java a pink-coloured Mantis, which, when at rest, exactly resembled a pink orchis-flower. The Mantis is a carnivorous insect which lies in wait for its prey, and by its resemblance to a flower the insects it feeds on would be actually attracted towards it. This one is said to feed especially on butterflies, so that it is really a living trap and forms its own bait ! All who have observed animals, and especially insects, in their native haunts and attitudes, can understand how it is that an insect which in a cabinet looks exceedingly conspicuous, may yet, when alive in its peculiar attitude of repose and with its habitual surroundings, be perfectly well concealed. We can hardly ever tell by the mere inspection of an animal, whether its colours are protective or not. No one would imagine the exquisitely beautiful caterpillar of the Emperor-Moth, which is green with pink star-like spots, to be protectively coloured; yet when feeding on the heather it so harmonises with the foliage and flowers as to be almost invisible. Every day fresh cases of protective colouring are being discovered even in our own country, and it is becoming more and more evident that

the need of protection has played a very important part in determining the actual coloration of animals.

The second class the warning colours are exceedingly interesting, because the object and effect of these is, not to conceal the object, but to make it conspicuous. To these creatures it is useful to be seen and recognised, the reason being that they have a means of defence which, if known, will prevent their enemies from attackthem, though it is generally not sufficient to save their lives if they are actually attacked. The best examples of these specially protected creatures consist of two extensive families of butterflies, the Danaidæ and Acræidæ, comprising many hundreds of species inhabiting the tropics of all parts of the world. These insects are generally large, are all conspicuously and often most gorgeously coloured, presenting almost every conceivable tint and pattern; they all fly slowly, and they never attempt to conceal themselves: yet no bird, spider, lizard, or monkey (all of which eat other butterflies) ever touch them. The reason simply is that they are not fit to eat, their juices having a powerful odour and taste that is absolutely disgusting to all these animals. Now, we see the reason of their showy colours and slow flight. It is good for them to be seen and recognised, for then they are never molested; but if they did not diter in form and colouring from other butterflies, or if they flew so quickly that their peculiarities could not be easily noticed, they would be captured, and though not eaten would be maimed or killed. As soon as the cause of the peculiarities of these butterflies was recognised, it was seen that the same explanation applied to many other groups of animals. Thus bees and wasps and other stinging insects are showily and distinctively coloured; many soft and apparently defenceless beetles, and many gay-coloured moths, were found to be as nauseous as the above-named butterflies; other beetles, whose hard and glossy coats of mail

[ocr errors]

render them unpalatable to insecteating birds, are also sometimes showily coloured; and the same rule was found to apply to caterpillars, all the brown and green (or protectivelycoloured species) being greedily eaten by birds, while showy kinds which never hide themselves-like those of the magpie-, mullein-, and burnetmoths were utterly refused by insectivorous birds, lizards, frogs, and spiders. (Contributions to Theory of Natural Selection, p. 117.) Some few analogous examples are found among vertebrate animals. I will only mention here a very interesting case not given in my former work. In his delightful book entitled The Naturalist in Nicaragua, Mr. Belt tells us that there is in that country a frog which is very abundant, which hops about in the day-time, which never hides himself, and which is gorgeously coloured with red and blue. Now frogs are usually green, brown, or earth-coloured, feed mostly at night, and are all eaten by snakes and birds. Having full faith in the theory of protective and warning colours, to which he had himself contributed some valuable facts and observations, Mr. Belt felt convinced that this frog must be uneatable. He therefore took one home, and threw it to his ducks and fowls; but all refused to touch it except one young duck, which took the frog in its mouth, but dropped it directly, and went about jerking its head as if trying to get rid of something nasty. Here the uneatableness of the frog was predicted from its colours and habits, and we can have no more convincing proof of the truth of the theory than such previsions.

[ocr errors]

The universal avoidance by carnivorous animals of all these specially protected groups, which are thus entirely free from the constant persecution suffered by other creatures not so protected, would evidently render it advantageous for any of these latter which were subjected to extreme persecution to be mistaken for the former, and for this

purpose it would be necessary that they should have the same colours, form, and habits. Strange to say, wherever there is an extensive group of directly-protected forms (division a of animals with warning colours), there are sure to be found a few otherwise defenceless creatures which resemble them externally so as to be mistaken for them, and which thus gain protection as it were on false pretences, (division b of animals with warning colours). This is what is called "mimicry," and it has already been very fully treated of by Mr. Bates (its discoverer), by myself, by Mr. Trimen, and others. Here it is only necessary to state that the uneatable Danaidæ and Acræidæ are accompanied by a few species of other groups of butterflies (Leptalidæ, Papilios, Diademas, and Moths) which are all really eatable, but which escape attack by their close resemblance to some species of the uneatable groups found in the same locality. In like manner there are a few eatable beetles which exactly resemble species of uneatable groups, and others which are soft, imitate those which are uneatable through their hardness. For the same reason wasps are imitated by moths, and ants by beetles; and even poisonous snakes are mimicked by harmless snakes, and dangerous hawks by defenceless cuckoos. How these curious imitations have been brought about, and the laws which govern them, have been discussed in the work already referred to.

The third class-Sexual Colourscomprise all cases in which the colours of the two sexes differ. This difference is very general, and varies greatly in amount, from a slight divergence of tint up to a radical change of coloration. Differences of this kind are found among all classes of animals in which the sexes are separated, but they are much more frequent in some groups than in others. In mammalia, reptiles, and fishes, they are comparatively rare and not great in amount, whereas among birds they are very frequent and very largely developed. So among

insects, they are abundant in butterflies, while they are comparatively uncommon in beetles, wasps, and hemiptera.

The phenomena of sexual variations of colour, as well as of colour generally, are wonderfully similar in the two analogous yet totally unrelated groups of birds and butterflies; and as they both offer ample materials, we shall confine our study of the subject chiefly to them. The most common case of difference of colour between the sexes, is for the male to have the same general hue as the females, but deeper and more intensified; as in many thrushes, finches, and hawks; and among butterflies in the majority of our British species. In cases where the male is smaller the intensification of colour is especially well pronounced, as in many of the hawks and falcons, and in most butterflies and moths in which the coloration does not materially differ. In another extensive series we have spots or patches of vivid colour in the male which are represented in the female by far less. brilliant tints or are altogether wanting; as exemplified in the gold-crest warbler, the green woodpecker, and most of the orange-tip butterflies (Anthocharis). Proceeding with our survey we find greater and greater differences of colour in the sexes, till we arrive at such extreme cases as some of the pheasants, the chatterers, tanagers, and birds-of-paradise, in which the male is adorned with the most gorgeous and vivid colours, while the female is usually dull brown, or olive green, and often shows no approximation whatever to the varied tints of her partner. Similar phenomena occur among butterflies; and in both these classes there are also a considerable number of cases in which both sexes are highly coloured in a different way. Thus many woodpeckers have the head in the male red, in the female yellow; while some parrots have red spots in the male, replaced by blue in the female, as in Psittacula diopthalma. In many South American Papilios green spots on the

male are represented by red on the female; and in several species of the genus Epicalia, orange bands in the male are replaced by blue in the female, a similar change of colour as in the small parrot above referred to. For fuller details of the varieties of sexual coloration we refer our readers to Mr. Darwin's Descent of Man, chapters x. to xviii., and to chapters iii. iv. and vii. of my Contributions to the Theory of Natural Selection.

The fourth group of Typicallycoloured animals-includes all species which are brilliantly or conspicuously coloured in both sexes, and for whose particular colours we can assign no function or use. It comprises an immense number of showy birds, such as Kingfishers, Barbets, Toucans, Lories, Tits, and Starlings; among insects most of the largest and handsomest butterflies, innumerable brightcoloured beetles, locusts, dragon-flies, and hymenoptera; a few mammalia, as the zebras; a great number of marine fishes; thousands of striped and spotted caterpillars; and abundance of mollusca, star-fish, and other marine animals. Among these we have included some, which like the gaudy caterpillars have warning colours; but as that theory does not explain the particular colours or the varied patterns with which they are adorned, it is best to include them also in this class. It is a suggestive fact, that all the brightly coloured birds mentioned above build in holes or form covered nests, so that the females do not need that protection during the breeding season, which I believe to be one of the chief causes of the dull colour of female birds when their partners are gaily coloured. This subject is fully argued in my Contributions, &c., chapter vii.

[blocks in formation]

here sketched out can be explained. We have first to inquire what is colour, and how it is produced; what is known of the causes of change of colour; and what theory best accords with the whole assemblage of facts.

The sensation of colour is caused by vibrations or undulations of the etherial medium of different lengths and velocities. The whole body of vibrations caused by the sun is termed radiation, and consists of sets of waves which vary considerably in their dimensions and their rate of vibration, but of which the middle portion only is capable of exciting in us sensations of light and colour. Beginning with the largest and slowest rays or wave-vibrations, we have first those which produce heat-sensations only; as they get smaller and quicker, we perceive a dull red colour; and as the waves increase in rapidity of vibration and diminish in size, we get successively sensations of orange, yellow, green, blue, indigo, and violet, all fading imperceptibly into each other. Then come more invisible rays, of shorter wave-length and quicker vibration, which produce, solely or chiefly, chemical effects. The red rays, which first become visible, have been ascertained to vibrate at the rate of 458 millions of millions of times in a second, the length of each wave being 30th of an inch; while the violet rays, which last remain visible, vibrate 727 millions of millions of times per second, and have a wave-length of

843516 th of an inch. Although the waves vibrate at different rates, they are all propagated through the ether with the same velocity (192,000 miles per second), just as different musical sounds, which are produced by waves of air of different lengths and rates of vibration, travel at the same rate, so that a tune played several hundred yards off reaches the ear in correct time. There are, therefore, an almost infinite number of different colourproducing vibrations, and these may be combined in an almost infinite variety of ways, so as to excite in us

If

the sensation of all the varied colours and tints we are capable of perceiving. When all the different kinds of rays reach us in the proportion in which they exist in the light of the sun, they produce the sensation of white. the rays which excite the sensation of any one colour are prevented from reaching us, the remaining rays in combination produce a sensation of colour often very far removed from white. Thus green rays being abstracted leave purple light; blue,. orange-red light; violet, yellowish green light, and so on. These pairs are termed complementary colours. And if portions of differently coloured lights are abstracted in various degrees, we have produced all those infinite gradations of colours, and all those varied tints and hues which are of such use to us in distinguishing external objects, and which form one of the great charms of our existence. Primary colours would therefore be as numerous as the different wavelengths of the visible radiations if we could appreciate all their differences, while secondary or compound colours caused by the simultaneous action of any combination of rays of different wave-lengths must be still more numerous. In order to account for the fact that all colours appear to us capable of being produced by combinations of three primary coloursred, green, and violet-it is believed that we have three sets of nerve fibres in the retina, each of which is capable of being excited by all rays, but that one set is excited most by the larger or red waves, another by the medium or green waves, and the third set chiefly by the violet or smallest waves of light; and when all three sets are excited together in proper proportions we see white. This view is supported by the phenomena of colour-blindness, which are explicable on the theory that one of these sets of nerve-fibres (usually that adapted to perceive red) has lost its sensibility, causing all colours to appear as if the red rays were abstracted from them. It is

« EelmineJätka »