Page images
PDF
EPUB

produced as if a gardener destroyed the short ones and sowed the seed of the long ones only; and this we know by experience would produce a regular increase of length, since it is this very process which has increased the size and changed the form of our cultivated fruits and flowers.

But this would lead in time to such an increased length of the nectary that many of the moths could only just reach the surface of the nectar, and only the few with exceptionally long trunks be able to suck up a considerable portion.

This would cause many moths to neglect these flowers because they could not get a satisfying supply of nectar, and if these were the only moths in the country the flowers would undoubtedly suffer, and the further growth of the nectary be checked by exactly the same process which had led to its increase. But there are an immense variety of moths, of various lengths of proboscis, and as the nectary became longer, other and larger species would become the fertilizers, and would carry on the process till the largest moths became the sole agents. Now, if not before, the moth would also be affected, for those with the longest probosces would get most food, would be the strongest and most vigorous, would visit and fertilize the greatest number of flowers, and would leave the largest number of descendants. The flowers most completely fertilized by these moths being those which had the longest nectaries, there would in each generation be on the average an increase in the length of the nectaries, and also

T

an average increase in the length of the probosces of the moths; and this would be a necessary result from the fact that nature ever fluctuates about a mean, or that in every generation there would be flowers with longer and shorter nectaries, and moths with longer and shorter probosces than the average. No doubt there are a hundred causes that might have checked this process before it had reached the point of development at which we find it. If, for instance, the variation in the quantity of nectar had been at any stage greater than the variation in the length of the nectary, then smaller moths could have reached it and have effected the fertilization. Or if the growth of the probosces of the moths had from other causes increased quicker than that of the nectary, or if the increased length of proboscis had been injurious to them in any way, or if the species of moth with the longest proboscis had become much diminished by some enemy or other unfavourable conditions, then, in any of these cases, the shorter nectaried flowers, which would have attracted and could have been fertilized by the smaller kinds of moths, would have had the advantage. And checks of a similar nature to these no doubt have acted in other parts of the world, and have prevented such an extraordinary development of nectary as has been produced by favourable conditions in Madagascar only, and in one single species of Orchid. I may here mention that some of the large Sphinx moths of the tropics have probosces nearly as long as the nectary of Angræcum sesquipe

dale. I have carefully measured the proboscis of a specimen of Macrosila cluentius from South America, in the collection of the British Museum, and find it to be nine inches and a quarter long! One from tropical Africa (Macrosila morganii) is seven inches and a half. A species having a proboscis two or three inches longer could reach the nectar in the largest flowers of Angræcum sesquipedale, whose nectaries vary in length from ten to fourteen inches. That such a moth exists in Madagascar may be safely predicted; and naturalists who visit that island should search for it with as much confidence as Astronomers searched for the planet Neptune,-and I venture to predict they will be equally successful!

Now, instead of this beautiful self-acting adjustment, the opposing theory is, that the Creator of the Universe, by a direct act of his Will, so disposed the natural forces influencing the growth of this one species of plant as to cause its nectary to increase to this enormous length; and at the same time, by an equally special act, determined the flow of nourishment in the organization of the moth, so as to cause its proboscis to increase in exactly the same proportion, having previously so constructed the Angræcum that it could only be maintained in existence by the agency of this moth. But what proof is given or suggested that this was the mode by which the adjustment took place? None whatever, except a feeling that there is an adjustment of a delicate kind, and an inability to see how known causes could have

produced such an adjustment.

I believe I have

shown, however, that such an adjustment is not only possible but inevitable, unless at some point or other we deny the action of those simple laws which we have already admitted to be but the expressions of existing facts.

Adaptation brought about by General Laws.

It is difficult to find anything like parallel cases in inorganic nature, but that of a river may perhaps illustrate the subject in some degree. Let us suppose a person totally ignorant of Modern Geology to study carefully a great River System. He finds in its lower part, a deep broad channel filled to the brim, flowing slowly through a flat country and carrying out to the sea a quantity of fine sediment. Higher up it branches into a number of smaller channels, flowing alternately through flat valleys and between high banks; sometimes he finds a deep rocky bed with perpendicular walls, carrying the water through a chain of hills; where the stream is narrow he finds it deep, where wide shallow. Further up still, he comes to a mountainous region, with hundreds of streams and rivulets, each with its tributary rills and gullies, collecting the water from every square mile of surface, and every channel adapted to the water that it has to carry. He finds that the bed of every branch, and stream, and rivulet, has a steeper and steeper slope as it approaches its sources, and is thus enabled to carry off the water from heavy rains, and to bear away

the stones and pebbles and gravel, that would otherwise block up its course. In every part of this system he would see exact adaptation of means to an end. He would say, that this system of channels must have been designed, it answers its purpose so effectually. Nothing but a mind could have so exactly adapted the slopes of the channels, their capacity, and frequency, to the nature of the soil and the quantity of the rainfall. Again, he would see special adaptation to the wants of man, in broad quiet navigable rivers flowing through fertile plains that support a large population, while the rocky streams and mountain torrents, were confined to those sterile regions suitable only for a small population of shepherds and herdsmen. He would listen with incredulity to the Geologist, who assured him, that the adaptation and adjustment he so admired was an inevitable result of the action of general laws. That the rains and rivers, aided by subterranean forces, had modelled the country, had formed the hills and valleys, had scooped out the river beds, and levelled the plains;-and it would only be after much patient observation and study, after having watched the minute changes produced year by year, and multiplying them by thousands and ten thousands, after visiting the various regions of the earth and seeing the changes everywhere going on, and the unmistakable signs of greater changes in past times, that he could be made to understand that the surface of the earth, however beautiful and harmonious it may appear, is strictly due in every detail

« EelmineJätka »