Page images





THESE have all been obtained from caves and late Tertiary or Post-Tertiary deposits, and consist of a large number of extinct forms, some of gigantic size, but all marsupials and allied to the existing fauna. There are numerous forms of kangaroos, some larger than any living species; and among these are two genera, Protemnodon and Sthenurus, which Professor Garrod has lately shown to have been allied, not to any Australian forms, but to the Dendrolagi or tree-kangaroos of New Guinea. We have also remains of Thylacinus and Dasyurus, which now only exist in Tasmania ; and extinct species of Hypsiprymnus and Phascolomys, the latter as large as a tapir. Among the more remarkable extinct genera are Diprotodon, a huge thick-limbed animal allied to the kangaroos, but nearly as large as an elephant; Nototherium, having characters of Macropus and Phascolarctos combined, and as large as a rhinoceros; and Thylacoleo, a phalanger-like marsupial nearly as large as a lion, and supposed by Professor Owen to have been of carnivorous habits, though this opinion is not held by other naturalists.

Here then we find the same phenomena as in the other countries we have already discussed,--the very recent disappearance of a large number of peculiar forms, many of them far surpassing in size any that continue to exist. It hardly seems probable that in this case their disappearance can have been due to the direct effects of the Glacial epoch, since no very extensive glacia

tion could have occurred in a country like Australia; but if the ocean sank 2,000 feet, the great eastern mountain range might have given rise to local glaciers. It is, however, almost certain that during late Tertiary times Australia must have been much more extensive than it is now. This is necessary to allow of the development of its peculiar and extensive fauna, especially as we see that that fauna comprised animals rivalling in bulk those of the great continents. It is further indicated by the relations with New Guinea, already alluded to, and by the general character of the various faunas which compose the Australian region, details of which will be found in the succeeding part of this work. The lowering of the ocean during the Glacial period would be favourable to the still further development of the fauna of such a country; and it is to the unfavourable conditions produced by its subsequent rising-equivalent to a depression of the land to the amount of two thousand feet—that we must impute the extinction of so many remarkable groups of animals. It is not improbable, that the disappearance of the ice and the consequent (apparent) subsidence of the land, might have been rapid as compared with the rate at which large animals can become modified to meet new conditions. Extensive tracts of fertile land might have been submerged, and the consequent crowding of large numbers of species and individuals on limited areas would have led to a struggle for existence in which the less adapted and less easily modifiable, not the physically weaker, would succumb.

There is, however, another cause for the extinction of large rather than small animals whenever an important change of conditions occurs, which has been suggested to me by a correspondent, but which has not, I believe, been adduced by Mr. Darwin or by any other writer on the subject. It is dependent on the fact, that large animals as compared with small ones are almost invariably slow breeders, and as they also necessarily exist in much smaller numbers in a given area, they offer far less materials for favourable variations than do smaller animals. In such an extreme case as that of the rabbit and elephant, the

| Mr. John Hickman of Desborough.

young born each year in the world are probably as some millions to one; and it is very easily conceivable that in a thousand years the former might, under pressure of rapidly changing conditions, become modified into a distinct species, while the latter, not offering enough favourable variations to effect a suitable adaptation, would become extinct. We must also remember the extreme specialization of many of the large animals that have become extinct-a specialization which would necessarily render modification in any new direction difficult, since the inherited tendency of variation would probably be to increase the specialization in the same directions which had heretofore been beneficial. If to these two causes we add the difficulty of obtaining sufficient food for such large animals, and perhaps the injurious effects of changes of climate, we shall not find it difficult to understand how such a vast physical revolution as the Glacial epoch, with its attendant phenomena of elevations and subsidences, icy winds, and sudden floods by the bursting of lake harriers, might have led to the total extinction of a vast number of the most bulky forms of mammalia, while the less bulky were able to survive, either by greater hardiness of constitution or by becoming more or less modified. The result is apparent in the comparatively small or moderate size of the species constituting the temperate fauna, in all parts of the globe.

It is much to be regretted that no mammalian remains of earlier date have been found in Australia, as we should then see if it is really the case that marsupials have always formed its highest type of mammalian life. At present its fossil fauna is chiefly interesting to the zoologist, but throws little light on the past relations of this isolated country with other parts of the globe.

MAMMALIAN REMAINS IN THE SECONDARY FORMATIONS. In the oldest Tertiary beds of Europe and North America, we have (even with our present imperfect record) a rich and varied mammalian fauna. As compared with our living or recent highly specialized forms, it may be said to consist of generalised types ; but as compared with any primeval mammalian type, it must be pronounced highly specialized. Not only are such diversified

groups as Carnivora, Perrissodactyle and Artiodactyle Ungulates, Primates, Chiroptera, Rodents, and Marsupials already well marked, but in many of these there is a differentiation into numerous families and genera of diverse character. It is impossible therefore to doubt, that many peculiar forms of mammalia must have lived long anterior to the Eocene period; but there is unfortunately a great gap in the record between the Eocene and Cretaceous beds, and these latter being for the most part marine continue the gap as regards mammals over an enormous lapse of time. Yet far beyond both these chasms in the Upper Oolitic strata, remains of small mammalia have been found; again, in the Stonesfield slate, a member of the Lower Oolite, other forms appear. Then comes the marine Lias formation with another huge gap; but beyond this again in the Upper Trias, the oldest of the secondary formations, mammalian teeth have been discovered in both England and Germany, and these are, as nearly as can be ascertained, of the same age as the Dromatherium already noticed, from North America. They have bee. named Microlestes, and show some resemblance to those of the West Australian Myrmecobius. In the Oolitic strata numerous small jawbones have been found, which have served to characterise eight genera, all of which are believed to have been Marsupials, and in some of them a resemblance can be traced to some of the smaller living Australian species. These, however, are mere indications of the number of mammalia that must have lived in the secondary period, so long thought to be exclusively “the age of reptiles ;” and the fact that the few yet found are at all comparable with such specialised forms as still exist, must convince us, that we shall have to seek far beyond even the earliest of these remains, for the first appearance of the mammalian type of vertebrata.


Compared with those of mammalia, the remains of birds are exceedingly scarce in Europe and America ; and from the wandering habits of so many of this class, they are of much less value

as indications of past changes in physical geography. A large proportion of the remains belong to aquatic or wading types, and as these have now often a world-wide range, the occurrence of extinct forms can have little bearing on our present inquiry. There are, however, a few interesting cases of extinct land-birds belonging to groups now quite strangers to the country in which they are found; and others scarcely less interesting, in which groups now peculiar to certain areas are shown to have been preceded by allied species or genera of gigantic size.

Palcarctic Region and N. India. In the caves and other Post-Pliocene deposits of these countries, the remains of birds almost all belong to genera now inhabiting the same districts. Almost the only exceptions are, the great auk and the capercailzie, already mentioned as being found in the Danish mounds; the latter bird, with Tetrao albus, in Italian caverns; and a species of pheasant (Phasianus) said to have occurred in the Post-Pliocene of France, considerably west of the existing range of the genus in a wild state.

In the preceding Pliocene deposits, but few remains have been found, and all of existing genera but one, a gallinaceous bird (Gallus bravardi) allied to the domestic fowl and peacock.

The Miocene beds of France and Central Europe have produced many more remains of birds, but these, too, are mostly of existing European genera, though there are some notable exceptions. Along with forms undistinguishable from crows (Corvus), shrikes (Lanius), wagtails (Motacilla), and woodpeckers (Picus), are found remains allied to the Oriental edible-nest swift (Collocalia) and Trogon; a parrot resembling the African genus Psittacus ; an extinct form Necrornis, perhaps allied to the plantain-eaters (Musophaga); Homalophus, doubtfully allied to woodpeckers, and Limnatornis to the hoopoes. The gallinaceous birds are represented by three species of pheasants, some very close to the domesticated species; Palæoperdix allied to the partridges ; and Palæortyx, small birds allied to the American genus Ortys, but with larger wings. There are also species of Pterocles allied to living birds, and a small pigeon. There are numerous living genera of Accipitres; such as eagle (Aquila),

« EelmineJätka »