Page images
PDF
EPUB

sp.) was also placed in the case. When fully fed, some attached themselves to the orange twigs, others to the bottle-brush branch; and these all changed to green pupae; but each corresponded exactly in tint to the leaves around it, the one being dark, the other a pale faded green. Another attached itself to the wood, and the pupa became of the same yellowish colour; while one fixed itself just where the wood and brick joined, and became one side red, the other side yellow! These remarkable changes would perhaps not have been credited had it not been for the previous observations of Mr. Wood; but the two support each other, and oblige us to accept them as actual phenomena. It is a kind of natural photography, the particular coloured rays to which the fresh pupa is exposed in its soft, semi-transparent condition, effecting such a chemical change in the organic juices as to produce the same tint in the hardened skin. It is interesting however to note, that the range of colour that can be acquired seems to be limited to those of natural objects to which the pupa is likely to be attached; for when Mrs. Barber surrounded one of the caterpillars with a piece of scarlet cloth no change of colour at all was produced, the pupa being of the usual green tint, but the small red spots with which it is marked were brighter than usual.

Many other cases are known among insects in which the same species acquires a different tint according to its surroundings; this being particularly marked in some South African locusts, which correspond with the colour of the soil wherever they are found. There are also many caterpillars which feed on two or more plants, and which vary in colour accordingly. A number of such

changes are quoted by Mr. R. Meldola, in a paper on Variable Protective Colouring in Insects (Proceedings of the Zoological Society of London, 1873, p. 153), and some of them may perhaps be due to a photographic action of the reflected light. In other cases, however, it has been shown that green chlorophyll remains unchanged in the tissues of leaf-eating insects, and being discernible through the transparent integument, produces the same colour as that of the food plant.

In the case of all these insects, as well as in the great majority of cases in which a change of colour occurs in animals, the action is quite involuntary; but among some of the higher animals the colour of the integument can be modified at the will of the individual, or at all events by a reflex action dependent on sensation. The most remarkable case of this kind occurs with the chameleon, which has the power of changing its colour from dull white to a variety of tints. This singular power has been traced to two layers of movable pigment-cells deeply seated in the skin, but capable of being brought near to the surface. The pigment-layers are bluish and yellowish, and by the pressure of suitable muscles these can be forced upwards either together or separately. When no pressure is exerted the colour is dirty white, which changes to various tints of bluish, green, yellow, or brown, as more or less of either pigment is forced up and rendered visible. The animal is excessively sluggish and defenceless, and its power of changing its colour so as to harmonise with surrounding objects is essential to its safety. Here too, as with the pupa of Papilio Nireus, colours, such as scarlet or blue, which do not occur in the immediate

environment of the animal, cannot be produced. Somewhat similar changes of colour occur in some prawns and flat-fish, according to the colour of the bottom on which they rest. This is very striking in the chameleon shrimp (Mysis Chamaleon), which is grey when on sand, but brown or green when among sea-weed of these two colours. Experiment shows, however, that when blinded the change does not occur; so that here too we probably have a voluntary or reflex sense-action.

These peculiar powers of change of colour and adaptation are, however, rare and quite exceptional. As a rule, there is no direct connection between the colours of organisms and the kind of light to which they are usually exposed. This is well seen in most fishes and in such marine animals as porpoises, whose backs are always dark, although this part is exposed to the blue and white light of the sky and clouds, while their bellies are very generally white, although these are constantly subjected to the deep blue or dusky green light from the bottom. It is evident, however, that these two tints have been acquired for concealment and protection. Looking down on the dark back of a fish it is almost invisible, while, to an enemy looking up from below, the light under-surface would be equally invisible against the light of the clouds and sky. Again, the gorgeous colours of the butterflies which inhabit the depths of tropical forests bear no relation to the kind of light that falls upon them, coming as it does almost wholly from green foliage, dark brown soil, or blue sky; and the bright underwings of many moths, which are only exposed at night, contrast remarkably with the sombre

tints of the upper wings, which are more or less exposed to the various colours of surrounding nature.

Classification of Organic Colours.-We find, then, that neither the general influence of solar light and heat, nor the special action of variously tinted rays, are adequate causes for the wonderful variety, intensity, and complexity of the colours that everywhere meet us in the animal and vegetable worlds. Let us therefore take a wider view of these colours, grouping them into classes determined by what we know of their actual uses or special relations to the habits of their possessors. This, which may be termed the functional and biological classification of the colours of living organisms, seems to be best expressed by a division into five groups, as follows:

1. Protective colours.

Animals, 2. Warning colours.

Plants.

3. Sexual colours.
4. Typical colours.
5. Attractive colours.

a. Of creatures specially protected.
b. Of defenceless creatures, mimicking a.

It is now proposed, firstly, to point out the nature of the phenomena presented under each of these heads; then to explain the general laws of the production of colour in nature; and, lastly, to show how far the varied phenomena of animal coloration can be explained by means of those laws, acting in conjunction with the laws of evolution and natural selection.

Protective Colours.-The nature of the two first groups, Protective and Warning colours, has been so fully detailed and illustrated in my chapter on " Mimicry and other Protective Resemblances among Animals," (Contributions to the Theory of Natural Selection, p. 45),

that very little need be added here except a few words of general explanation. Protective colours are exceedingly prevalent in nature, comprising those of all the white arctic animals, the sandy-coloured desert forms, and the green birds and insects of tropical forests. It also comprises thousands of cases of special resemblance -of birds to the surroundings of their nests, and especially of insects to the bark, leaves, flowers, or soil, on or amid which they dwell. Mammalia, fishes, and reptiles, as well as mollusca and other marine invertebrates, present similar phenomena; and the more the habits of animals are investigated, the more numerous are found to be the cases in which their colours tend to conceal them, either from their enemies or from the creatures they prey upon. One of the last-observed and most curious of these protective resemblances has been communicated to me by Sir Charles Dilke. He was shown in Java a pink-coloured Mantis which, when at rest, exactly resembled a pink orchis-flower. The mantis is a carnivorous insect which lies in wait for its prey; and, by its resemblance to a flower, the insects it feeds on would be actually attracted towards it. This one is said to feed especially on butterflies, so that it is really a living trap, and forms its own bait !

All who have observed animals, and especially insects, in their native haunts and attitudes, can understand how it is that an insect which in a cabinet looks exceedingly conspicuous, may yet when alive, in its peculiar attitude of repose and with its habitual surroundings, be perfectly well concealed. We can hardly ever tell by the mere inspection of an animal, whether its colours are protective or not. No one would imagine the exquisitely

« EelmineJätka »